
Comparison of Operating System Complexity

Dan-Simon Myrland
dansimon@radiotube.org

ABSTRACT

It is plainly obvious that computer operating systems are growing increasingly
complex every year, and have been for some time now. In the early days of UNIX a
PDP-11 with ¼ Mb of ram and 30 Mb of diskspace served its 100 users well, whereas
today a computer with 10,000 times more resources is not even adequate for a single user.
The increased complexity does not only tax our hardware but also our minds. Whereas
Dennis Ritchie and Ken Thompson at Bell Labs wrote the entire UNIX operating system
and userland in a matter of weeks in the late 60’s, you would be hard pressed to find a
developer today that can finish a company webpage within a year.

Naturally you cando a lot more with a computer today then you could in the 70’s,
but at what cost? This article does not give a definitive answer to the correct balance
between providing the necessary features and keeping things simple, instead it simply
analyzes the complexity of operating systems, and their various components. Such
analysis is illuminating in itself and can provide hints to the above question. Only open
source UNIX-like operating systems are analyzed, due to legal requirements and the need
for commonalities in order to make comparisons.

Table of Contents

CHAPTERS
1. Preliminary information 1
2. ANCIENT UNIX 5
3. PLAN 9 and INFERNO 23
4. MINOCA, SerenityOS and HAIKU 42
5. BSD and MINIX 53
6. LINUX and SOLARIS 63
7. Concluding thoughts 77

APPENDIX
A. Collecting the Statistics 78
B. Echo source code 95

1. Preliminary information

1.1. Abbreviations used

doc Pages of user documentation src Total lines of system source code
man Manual pages (55 lines/pg) pkg 3rd party packages in repository
bin Number of programs mem Memory usage at startup
files Number of files hdd Disk space used after installation
conf System configuration files K, M times a thousand, million
pss Running processes at startup n/a Information not available

- 2 -

1.2. Operating Systems used

HISTORIC: ALTERNATIVE:
UNIX V1 1971-11 9ferno latest 2022-10-07
UNIX V5 1974-06 Plan9Port latest 2022-10-07
UNIX V6 1975-05 9legacy latest 2022-10-07
UNIX V7 1979-01 9front latest 2022-10-07
BSD 4.1 1981-06 Minix 3.4.0rc6 2017-05
UNIX V8 1985-02 Minoca latest 2022-10-07
BSD 4.3 1986-06 SerenityOS latest 2022-10-07
UNIX V10 1989-10 Haiku latest 2022-10-07

LINUX: BSD/SOLARIS:
Tiny Core current 2022-10-07 OpenBSD 7.1 2022-04-21
Alpine 3.16.2 2022-08-09 NetBSD 9.3 2022-08-04
Debian 11.5.0 2022-09-10 DragonFly BSD 6.2.2 2022-06-09
Slackware 15.0 2022-02-03 FreeBSD 13.1 2022-05-16
openSUSE 15.4 2022-06-08 OmniOSce latest 2022-10-07
AlmaLinux 9.0 2022-05-26 OpenIndiana Hipster 2021-10

1.3. Statistics

os man bin files conf pss src pkg mem hdd
v1 ˜160 65 329 4 n/a ˜21K n/a n/a 0.8Mb
v5 ˜140 94 <528 4 4 56K n/a 11Kb ˜2.0Mb
v6 ˜175 120 1855 7 4 83K n/a 11Kb 4.0Mb
v7 264 164 2K 8 5 165K n/a 19Kb 9.7Mb
41bsd 509 290 2K 20 9 402K n/a 22Kb 13Mb
v8 501 290 10K 20 6 467K n/a 11Kb 26Mb
43bsd 1272 351 10K 40 13 654K n/a 174Kb 20Mb
v10 1513 525 <21K n/a n/a 1.8M n/a n/a <157Mb

9ferno 1201 688 14K <3 21 1.2M n/a 640Kb 156Mb
p9p 807 268 8K <3 9 435K n/a ˜30Mb 105Mb
9legacy 1184 816 20K <5 53 1.8M ˜300 ˜5Mb 592Mb
9front 1213 962 37K <5 69 1.7M ˜300 ˜15Mb 544Mb
Minix 12K 630 17K 244 46 6.8M 4280 54Mb 911Mb
Minoca n/a 135 649 44 4 677K 269 7.6Mb 26Mb
Serenity 227 306 15K 19 30 545K 257 110Mb 934Mb
Haiku 21K 613 32K 61 22 2.9M 3597 237Mb 695Mb

OpenBSD 15K 836 25K 446 45 30M 10K 56Mb 1.5Gb
NetBSD 35K 1146 37K 424 24 41M 19K 112Mb 1.1Gb
DragonFly 28K 927 28K 337 125 10M 29K 20Mb 398Mb
FreeBSD 64K 967 19K 603 41 17M 30K 71Mb 1.9Gb
OmniOSce 113K 1303 75K 1009 41 <12M 1801 83Mb 649Mb
OpenIndiana 82K 2356 224K 1917 82 <12M 6984 277Mb 7.5Gb

Tiny Core n/a 370 25K 86 64 23M 2407 33Mb 29Mb
Alpine n/a 447 47K 342 69 23M 17K 43Mb 135Mb
Debian 13K 3114 293K 1829 161 n/a 60K 497Mb 3.8Gb
Slackware 72K 6253 681K 2490 99 429M 9180 97Mb 16Gb
openSUSE 27K 3378 539K 1646 153 n/a 50K 516Mb 5.6Gb
AlmaLinux 28K 2011 294K 1743 182 <106M 6492 572Mb 4.1Gb

- 3 -

1.4. Lies, Damn Lies, and Statistics

You should be careful reading too much into the statistics above. All are taken from a ‘‘default’’
installations on a qemu virtual machine using 1Gb of memory, but what the operating system does by
default varies a great deal. I used a KDE desktop for openSUSE, a GNOME desktop for Debian and Alma,
and no desktop for Alpine and Slackware. OpenBSD and NetBSD come with simple GUI’s, which I used,
FreeBSD and DragonFly BSD don’t. The package counts for Slackware and the BSD’s are 3rd party
source projects, while the other Linux and Solaris distros have precompiled binaries, these numbers will be
higher since a source project can often be compiled into multiple binaries. Minix and DragonFly delegate
more of the traditional kernel tasks to userland, and Plan 9 is a highly parallelized system, which will result
in a higher number of background processes. Plan9Port isn’t an operating system at all, but a collection of
userland programs. Some of the information above is only approximate or fragmental. For example the
source code count for Solaris systems only cover the base system, 3rd party software is not included. The
source for AlmaLinux also only cover the BaseOS repository of Red Hat. If all 3rd party code were
included in OpenIndiana and AlmaLinux, the statistics would be close to that of Slackware. There are other
factors to consider as well. See appendix A for details, but for now it’s wise to heed the axiom:careful
when reading statistics.

1.5. Defining UNIX

Throughout this article we will frequently refer to ‘‘UNIX’’, what pray tell is the exact meaning of
such a word? Ah, the flamewars kindled by our innocent youth...And the tongue is a fire, a world of
iniquity: so is the tongue among our members, that it defileth the whole body, and setteth on fire the course
of nature; and it is set on fire of hell,to quote the old book. Way back in 1969UNIX was a very specific
operating system, but 50 years of history has muddled the concept considerably. Today ‘‘UNIX’’ can mean
different things depending on your point of view:

Judicial

Technically UNIX" is a trademark of the X/OPEN Group. In accordance with copyright law, only
they have the legal right to brand beasts with this epitaph. Companies wanting such a mark on their prize
bull must undergo a ceremony calledthe X/OPEN interface-specification tests,and pay the X/OPEN Group
a handsome royalty fee. MacOS, AIX, HP-UX, Solaris and other commercial systems are trademarked as
UNIX, while Linux, FreeBSD, Minix and other opensource systems are not. In practice though this
trademark is just an expensive sticker for vendors, it has no relevance to anyone, except lawyers.

Historic

Unlike Linux, the BSD branch of operating systems share a rich history with UNIX, they evolved
directly from this primordial ancestor way back in the 70’s, and there was much collaboration between the
two projects. Commercial UNIX borrow heavily from BSD, and textbooks at the time referred to BSD as
‘‘Berkeley UNIX’’. But ever since the AT&T lawsuit in the early 90’s, the BSD folk have been very care-
ful to respect the above definition of UNIX, and officially call their operating systemUNIX -like*, but they
are non the less proud of their historical and cultural heritage (or baggage as a Linux user might say).

Pragmatic

History and culture are poor definitions. For example, while it is true that Linux is not directly
descendant from UNIX, it is nevertheless a UNIXclone,meaning that it was reverse engineered to look,
behave andsmell exactly like it. And whereas half of MacOS X source code is a direct copy paste of
FreeBSD, the culture between the two communities are certainly different. MacOS X and Solaris are both
trademarked UNIX", while FreeBSD and Linux aren’t, even though MacOS is eerily similar to FreeBSD
and Solaris similar to Linux. A pragmatist would sayIf it looks like a duck, and quacks like a duck, it’s a
duck! Hence it’s all UNIX. We largely use a pragmatic approach in this article, but the exact meaning of
‘‘UNIX’’ will depend on the context.

*) read: UNIX*wink wink*

- 4 -

Plan 9, Inferno, Haiku, SerenityOS and Minoca are also discussed in this article, calling these sys-
tems UNIX would be more like calling a platypus a duck. Only an ignorant fool would do so, but then
again, therearesimilarities...

1.6. Defining a Good Operating System

Another superb source for flamewars is the questionwhat is the best operating system?Besides
being obviously irrelevant (best atwhat?), the question quickly taps into a whole world of tear dripping
Pride and Prejudice. Try going in to a British pub and askwhat’s the best football team chaps?and you
will get a sense of what I mean. At the end of the day, there is no such thing as ‘‘the best’’ operating
system. Different systems are needed in different circumstances, and for better or worse, the one you end
up using is almost always governed by your environment and subjective preferences. For some the
availability of high quality source code is paramount, while trivial things such as gaming is unimportant.
For others, strange as it may seem, it is the other way around.

Increasingly computers are becoming mere consumer products. People just want to buy a shiny new
gadget and have instant plug-and-play gratification. While convenient, materialism does have its draw-
backs. The new thingy magingy can never have too much specs, it can never be too shiny or too new, and
yet the enjoyment it provides is short lived and shallow. They may call it innovation, but the insatiable
drive for more stuff does little more then increase volume. This drive is also apparent in the opensource
world. Many distro hoppers have an unquenchable thirst after new ‘‘features’’, even though they never
actually use them. Despite its name materialism is not bound to physical objects.

UNIX however was created by developers for developers, it is essentially the reverse of a consumer-
centric system. Instead of giving the users a five star hotel experience, it hands you a toolbox and gets out
of the way as you go about your business. The tools must be of good quality, but simple and honed to the
task at hand, void of frills and nonsense. This philosophy is great for work, but terrible for entertainment.
Which is why UNIX has never been a goodproduct,even though it’s arguably the only relevant operating
system for serious work.

As you may have guessed already, the author of this article tend to adopt the classic UNIX perspec-
tive of what a ‘‘good’’ operating system is, alienating many of our readers no doubt. Hopefully, a few
objective findings will still sift through, and you may even find some humor in the snarky commentary. In
any case, if you do want to understand what the UNIX philosophy is all about, my recommendation is to
readThe UNIX Programming Environment,and experiment in a UNIX shell as you do so. This classic
book from 1984 is still 99% relevant for modern systems, and provides a powerful practical evidence for
the wisdom of the UNIX philosophy.

- 5 -

2. ANCIENT UNIX

The development of UNIX was quite accidental. Bell Labs, in conjunction with other big organiza-
tions, had been working on the Multics operating system for years. It was a hugely bloated system and Bell
Labs eventually pulled out in disgust and vowed that it would never ever ever have anything to do with
operating systems ever again. Unbeknownst to management however, Ken Thompson, one of the many
free minded hackers at Bell Labs, wrote a tiny toy operating system on a cast of PDP-7 in 1969, a ‘‘cas-
trated’’ Multics, or EUNUCHS was thus created. With the support of a small team of other enthusiasts,
they tricked management into buying a bigger computer, a PDP-11, which he and his buddies could con-
tinue to experiment on. The first release of UNIX was in 1971. By the 6th edition, released in 1976, the
system finally broke containment and spread outside the lab. The rest as they say, is history.

Early editions of UNIX ran exclusively on the PDP-11, this machine affected development in many
subtle ways. Each program had limited runtime memory for instance, forcing the development of small
utilities. It used a physical lineprinter as its terminal, encouraging low verbosity and limiting interactivity,
and its painfully awkward keyboard no doubt contributed to succinct misspellings. Early development of
UNIX was surprisingly dynamic, and the system changed radically between releases. The well known
UNIX philosophy developed gradually and through practical experience. For example, pipes were not
invented until the 3rd release, but not in the form we know today, that came around in the 4th release.
Standard error came about later too, when they discovered that sending errors down a pipeline was gener-
ally a bad idea. Even manpages were not formatted with troff, and the kernel not written in C, until the 4th
release of UNIX. Early systems did not have a programmable shell, but rather a command shell akin to
CMD in Windows. If you wanted to do some quick and easy coding in those days you did it in C, as
opposed to the nitty gritty of ‘‘real’’ programming done in assembly. Meanwhile the University of Califor-
nia at Berkeley, got hold of a UNIX copy and released its 1st version of BSD (Berkeley Software Distribu-
tion) in 1978. Much collaboration between these two projects and other universities ensued. By the fol-
lowing year, the 7th edition of UNIX was released, introducing innovations such as the programmable
Bourne shell,sed and awk. UNIX was becoming seriously powerful.

Around this time lineprinters started to be replaced with computer screens,vi and more (not to
mention rogue) from the BSD camp made use of this new capability. The first BSD releases were really
just a set of addons to UNIX from Bell Labs, in fact about 20% of 1BSD and 2BSD’s source code was the
text editor vi . But less then a year after the 7th edition of UNIX, 3BSD was released as a fully functional
operating system for the new VAX machine. This release convinced DARPA to fund the project, and in the
following years BSD introduced some highly influential technologies, such as a crash safe filesystem,
virtual memory and TCP/IP (aka. ‘‘The Internet’’). Not just that, but the entire BSD ecosystem had a very
strong influence on what was later to become the opensource community, version control and open
governance came from the BSD camp for instance, in addition to a host of software that we now take for
granted. Modern Ubuntu users can probably fire up an old BSD release in an emulator and feel quite at
home, whereas the old UNIX systems from Bell Labs will feel decidedly more alien! As a rule though the
BSD developers largely ignored the UNIX authors drivel about simplicity and what not.* To quote

*) To be fair, the UNIX authors largely ignored the users drivel about speed and robustness. Besides features, the BSD
camp considered such things important.

- 6 -

Kernighan and Pike, Anno 1984:As the UNIX system has spread, the fraction of its users who are skilled in
its application has decreased. Time and again, we have seen experienced users, ourselves included, find
only clumsy solutions to a problem, or write programs to do jobs that existing tools handle easily. Of
course, the elegant solutions are not easy to see without some experience and understanding.

The growing interest in UNIX finally reached AT&T headquarters, the commercial empire who
owned Bell Labs, by the early 80’s, and the golden age was over. AT&T’s first action was to make UNIX
proprietary, and thus stop the proliferation of its source code, which more or less killed computer science.
They consolidated the many diverse UNIX distributions that had sprung into existence into one proprietary
system known as System III, and later System V. By the time that System V Release 4 (or SVR4) came out
in the late 80’s a great many commercial vendors were shipping their own brand of UNIX using AT&T’s
system as their base. Although a few of these commercial systems have survived down to this day, such as
AIX and HP-UX, most of them died during the fierce competition from Microsoft in the 90’s.

The original authors of UNIX were graciously allowed to keep working on their pet project, from
now on referred to as Research UNIX, but were otherwise ignored by management as per usual (naturally,
these researchers were equally disinterested in management). Eventually these researchers were so fed up
with the archaic limitations of the now 20 year old operating system, that they rewrote everything from
scratch. Their new UNIX successor, released in 1992, was called Plan 9 from Bell Labs. They were still
under the evil management of AT&T however, so they were not allowed to release their work under a per-
missive license. This doomed Plan 9 into obscurity, where it has remained down to this day, even though
its ideas has influenced all modern operating systems and several opensource forks of it now exist.

The second thing AT&T did was to sue their BSD competitor. The court case lasting from 1992 to
1994 seriously damaged BSD’s reputation, and may have indirectly contributed to the massive growth of
Linux, released during this critical juncture. Eventually the lawsuit was rendered mute when it was shown
that AT&T’s commercial systems had freely used BSD code without giving the Berkeley developers any
credit, and thus had violated licenses themselves. In the settlement that followed Berkeley agreed to
remove a handful of files and released their final BSD system in 1994. This system, 4.4BSD-Lite, was not
an actual working system, since it lacked a few vital parts, but it was used as a base for the community
forks FreeBSD and NetBSD, which were already in existence at the time. Later, other BSD forks, such as
OpenBSD and DragonFly BSD, sprang into existence. All of these forks exist and are actively developed
down to this day, and the permissive BSD license has allowed these systems to be used in a great many
commercial offerings, such as MacOS and Netflix. In fact nearly all major vendors today, from Microsoft’s
TCP/IP stack, to Androids userland, to the routers on your wall, have pieces of BSD code in them.

When AT&T stopped giving away the UNIX source code to universities after Version 7, Andrew
Tanenbaum, a professor in the Netherlands, rewrote the operating system for use in his computer science
courses. This mini-UNIX, Minix, was intended as an educational tool only, not as a general purpose oper-
ating system. Linus Torvalds however, a young university student from Finland, read Tanenbaum’s book
on Minix and was inspired to write his own version called Linux. Released in the early 90’s with a permis-
sive license, Linux quickly became the main vehicle for opensource development. Today 100% of the top
500 supercomputers in the world, and 2/3 of the internet, are running Linux. It is by far the most dominant
opensource project today, and it is largely responsible for breaking the proprietary hegemony of Microsoft.

- 7 -

2.1. Text Editors

V1 V5 V6 V7 41BSD V8 43BSD V10
name src src man src src man src src src man src
ed ˜1215 1627 4 1182 1537 6 1605 1639 1593 7 1626
ex/vi 14,204 14,473 15,013 2 16,316
sam 2694 8688
emacs 69,815 n/a

I’ll begin by quoting the first couple of paragraphs in Michael W Lucas bookEd Mastery(2018)*:

Let me be very clear here: ed(1)is the standard Unix text editor. Dennis Ritchie, co-creator of
Unix, declared it so.

Who are you to argue with someone who can write a complete operating system without using
a glass teletype?¹

Many young sysadmins naively hoist their pennants to defend overblown, overwrought,
overdesigned text editors like ex, vi, or even the impossibly bloated nvi. A few are so lost as to
devote themselves to turgid editors meant for mere users, such as vim and Emacs. This way lies not
only appalling sysadmin skills, but an absence of moral fiber. As a sysadmin, you must have enough
brain power to remember what you typed, to hold your own context in your head, and to truly com-
mune with the machine on a deep and personal level.

¹) You know, a glass teletype. That toy that kids keep calling a ‘‘monitor’’, even though we all know monitors are reference

speakers used in audio production.

* That is not a typo, his book is from 2018.

- 8 -

On a more serious note, the question of what text editor to use was a hot debate even as early as
UNIX V7. vi and Emacs were popular, so calledscreeneditors, although by default the system only
came with ed . ed was an old editor even then (in fact it even predatesecho and C!), and was designed
for a computer using line printers as terminals. Consequentlyed sessions are non-interactive, that is, you
type in whatever commands you need, while getting virtually no feedback.vi users can think of it as
running cat << EOF > file , but with the added ability to typeex commands. To demonstrate a
simple editing session:

ed greeting.txt
a append text
Hello World!
. stop appending text
w write file to disk
q quit

Of course a more realistic firsted session might look more like this:

ed

?
help
?
?
?
quit
?
exit
?
bye
?
hello?
?
eat flaming death
?
^C
?
^C
?
^D
?

ed wasn’t a popular editor, despite the consistent and elegant user interface. Newbs continued to
whine despite sysadmins loving advice, such asread the manual.Tough love it may be, but it’s actually
good advice. The 10 minutes it takes you to read the ed manual is time well spent, since many of the
editors conventions are used throughout the UNIX system. And even ifed may not be well suited for
interactive sessions where you need to jump back and forth in a file, it excels at batch jobs. You cannot
control vi or Emacs from within a pipe, but you absolutely can useed in this fashion. And unlikesed
or awk it doesn’t apply commands to every line in the file, instead you must specify which part of the file
you want to change, this makes it much easier to work with isolated segments and blocks of text. For
example to delete just the first block of text in a file:

echo ’1,/^$/d
wq’ | ed - file

This short example illustrates one of UNIX’s most powerful ideas, ie. if programs take nothing but
plain text as input (and output), it can become inputagnostic. ed does not know, nor care, if its input is
given by a human punching away at the keyboard, a file on disk or some other program writing to it. Of
course not every program can be written in this way, but in UNIX this designshouldbe the rule, not the

- 9 -

exception (in modern UNIX it is not). When this is the case, the whole system becomes transparent and
scriptable. It takes some experience to realize this, but when this idea is followed through, even a simple
operating system becomes incredibly powerful!

We have mentionedvi several times in our brief discussion already. This classic UNIX editor
originated from the BSD camp, and was essentiallyed with a visual interface, hence its name. In fact the
termcap backend needed to support this visual text editor, that Bill Joy wrote around 1977, became the
basis for all terminal pseudo-graphics down to this day! We can illustrate the similarities betweenvi and
ed by writing the above example invi :

vi greeting.txt
a append text
Hello World!
<ESC> stop appending text
:w write file to disk
:q quit

The difference here, beyond the visual aspect ofvi , is that the escape key is used to terminate text
input, rather then a dot, and that some commands must be prepended by a colon. A rule of thumb here is
that if the command in question is used to move about or shuffle some text on the screen, you don’t need to
prepend a colon, but if the command effects the whole file, such as saving, quitting or search and replace,
you do. As you can see,vi requires the user to know many one letter commands for basic text operations
just like ed does, but the situation is compounded by that fact that you need to learn a host of interface
commands as well. Whereased has two modes, command and input,vi has four. It has been suggested
(jokingly?) that a good random generator would be to activate a keylogger whenever a newbie tries to quit
vi , since he will likely try out many different combinations before he stumbles on the correct sequence,
:wq Yet despite the steep learning curve,vi quickly became a very popular editor and supersededed as
the de facto standard. Today you will findvi , or variations thereof, on virtually all UNIX-like operating
systems.

The other popular editor of choice was Emacs, which originated from the Lisp machines at MIT.
Lisp is a fascinating and unusually dynamic language, programs written in it are essentially self-hosting vir-
tual machines. Whatever good things one can say about the language, and there are a great many to choose
from, it does not generally follow the UNIX philosophy of tiny isolated programs that do only one thing.
For Emacs this is especially true, it is one massive program that tries to do everything. Not only can you
read your email, browse the web and listen to music on modern versions of GNU Emacs, but it even comes
with tetris and a psychoanalyzer! Hence the old saying:Emacs is an operating system, that only lacks a
good text editor*

The authors of UNIX were aware of the interactive limitations ofed , but vi and Emacs did not
peek their interest. The reason as Rob Pike explained it, was that it made no sense to add interactivity to a
text only interface. Later when Research UNIX developed a graphical interface, Pike wrote the text editor
sam, which is essentiallyed plus a mouse driven GUI. The difference betweensam and vi , is that the
interface to sam is natural and easy to learn, there are no weird keyboard shortcuts, you just point and
click. Later on Pike wrote another editor calledacme. As the name suggestsacme was designed to do-
it-all. But unlike Emacs, it doesn’t utilize a vast number of internal tools, instead it ties together the
external tools UNIX already provides. Lastly, although these programs are graphical and interactively used
by the mouse, they can be controlled by writing plain text strings to files, and are thus fully scriptable. We
will discuss these text editors in greater detail in the Plan 9 section. But for now we can make an astute
observation: While most UNIX users just assume that graphics and interactivity necessitates a deviation
from the UNIX design philosophy, this is evidently not the case.

*) (this is false (you can run vi in Emacs (and ed in vi (and cat in ed))))

- 10 -

2.2. Internet

V1 V5 V6 V7 41BSD V8 43BSD V10
name src src man src src man src src src man src
mail n/a 236 0.5 238 511 1 744 1039 663 9 12,031
write n/a 196 0.5 197 168 0.5 188 296 227 0.5 315
news 293 235
telnet 1866 5 651
rsh 451 3.5 129
rcp 344 636 1 529
ftp 4532 9 4419
ifconfig 413 2.5
sendmail 20,634 4.5

The internet as we know it did not come into existence until the late 90’s, and naturally the early ver-
sions of UNIX did not come with a web browser. TCP/IP, the protocol that makes the internet possible was
introduced in 4.2 BSD in 1983, but communications between users and machines existed way before that,
in fact UNIX was a multiuser environment from day one.

In the first chapter ofThe UNIX Programming Environment(1984), this demonstration is given:

Establish a connection: dial a phone or turn on a switch as necessary.
Your system should say

login: you Type your name, then press RETURN
password: Your password won’t be echoed as you type it
You have mail. There’s mail to be read after you log in
$ The system is now ready for your commands
$ Press RETURN a couple of times
$ date What’s the date and time?

- 11 -

Sun Sep 25 23:02:57 EDT 1983
$ who Who’s using the machine?
jlb tty0 Sep 25 13:59
you tty2 Sep 25 23:01
mary tty4 Sep 25 19:03
doug tty5 Sep 25 19:22
egb tty7 Sep 25 17:17
bob tty8 Sep 25 20:48
$ mail Read your mail
From doug Sun Sep 25 20:53 EDT 1983
give me a call sometime monday

? RETURN moves on to the next message
From mary Sun Sep 25 19:07 EDT 1983 Next message
Lunch at noon tomorrow?

? d Delete this message
$ No more mail
$ mail mary Send mail to mary
lunch at 12 is fine
ctl-d End of mail
$ Hang up phone or turn off terminal

and that’s the end

There are many similarities between this workplace in the early 80’s and modern ones today. Late
hours at the office doing frivolous work seems to be a universal constant. But there are notable differences
too. For one, this example demonstrates how much easier it was to collaborate with colleagues back then.
At the time a university or company usually only had a single computer, a big mainframe hidden away in
the basement. Multiple terminals were connected to this machine, perhaps one for every office. Being on a
single computer allowed users to share files easily and delegate access to common projects using only basic
commands, such ascp and chmod. mail only required a username as argument,write allowed you
to chat one-on-one,news provided a common bulletin board, and there were other tools as well,wall ,
who and finger are some examples. Collaborating on this level with your colleagues today is non-
trivial.

Also since the terminals were diskless, you only had to flip the power switch on, and log in with your
user name and password to enter the system, to leave just flip the power switch off. And just like the uni-
versity may have had only one janitor to take care of the physical buildings, it would only needed one
sysadmin to maintain the computer.* The other employers could freely use the operating system without
needing to know the finer details of how to maintain it. In fact, the secretarial staff at Bell Labs would
commonly log in to a session that only raned . They did not need to knowanythingmore about the
system (although a shell escape was later built into the editor in case they did). Today everyone is running
their own machine, and they all need to be computer experts to use it well, they all need to install their own
software, monitor their own disk usage, update their own system, and fix their own problems as they arise.

The tools used for collaborating with colleagues today are huge and complex, since everyone has
their own favorite chat program, and what not, which naturally support audio, video, emojis and any other
conceivable barrier to thoughtful communication, which needs to navigate through all kinds of remote pro-
tocols, negotiate between layers of security, and desperately try to be compatible and ‘‘integrated’’ with
every manner of platform and nonsense on the planet. It doesn’t help either that everybody changes their
hardware like underwear, making it impossible to learn, let alone standardize, anything. To quote the pro-
found philosophical words of Rob Pikeit’s just the stupidest idea ever.

*) The difference being that when the sysadmin died, he would take the keys with him to the grave. Remember to backup
your sysadmin folks!

- 12 -

2.3. Office

It may come as a surprise, but office utilities were a major part of the old UNIX system. In fact the
official reason for funding the project in the first place, was to make a system that could typeset documents
and thus save Bell Labs a great deal of money. The tool for this job wastroff , based onroff , based
on runoff , which ran documents off a printer. troff in turn inspired tex , which in turn inspired
latex , which in turn has nothing to do with leather.

troff was used to write the UNIX manpages, and in this capacity it has survived down to our
present day in various forms. But it’s worth mentioning that within Bell Labstroff was used much
more extensively, several high quality books and research papers, as well as regular correspondence in the
lab was exclusively written introff . It is a shame that the broader community didn’t appreciate the
capabilities of this tool, since it’s such an elegant and capable markup language. Neverthelesstroff
isn’t quite dead yet, the textbookThe Design and Implementation of The FreeBSD Operating System
(2015), was written in it, for instance.

V1 V5 V6 V7 41BSD V8 43BSD V10
name src src man src src man src src src man src
troff n/a 2340 1.5 7687 12,922 1.5 13,408 15,241 11,617 1.5 31,750
(prep) 306 8553 4.5 4177 20,567 10,174 5 33,303
spell 634 2.5 683 1255 705 1 1622
diction 7541 2598 7706 1 7915
pr 403 381 1 391 465 410 1 453
lpr 182 0.5 218 1015 10,800 2 1574
fmt 470 n/a 498 747 398 0.5 182

For its time troff was a very large program, by V7 thetroff suit of applications were about 15
times larger then the systems text editor. (by comparison moderntexlive is 200 times larger still and
takes at least half a Gigabyte of harddisk space) Over time a collection of preprocessors were created for
troff , such as tbl , eqn and pic for tables, math equations and pictographics (the preprocessors are

- 13 -

collectively called ‘‘prep’’ in the table above). In addition to multiple macro packages, this made it
potentially hard to compile atroff document into a readable format. For example, to read a documents
with both graphs and tables in a terminal, you might have to type the ungainly commandgrap doc.ms
| pic | tbl | nroff -ms . No doubt this is one of the reasons why it didn’t catch on. On the other
hand, it is easy enough to automate this task with a script, and later Research UNIX and Plan 9 included a
script called doctype that did just that. But the UNIX community outside Bell Labs ignored these
advancements, and preferred the dubious elegance of even more convoluted office alternatives, such as Tex
and DocBook.

The high focus on documentation at Bell Labs may have been somewhat of a happy accident. As
mentioned document processing was a real need and persuaded management to fund the project, and since
this was academia, not business, the researchers had ample time and resources. It can be safely said that
few operating system have shipped with better documentation then UNIX V7. The manuals came in two
parts, volume 1 was the technical reference (aka. ‘‘manpages’’), volume 2 was a collection of abstract
papers that described various aspects of the system, such as practical tutorials, comments on security and so
on. Volume 1 was indispensable for experts who already know the system, volume 2 was indispensable for
people who didn’t. Volume 2 was twice the size of volume 1, and combined they had about the same
amount of text as the system source code (just try to imagine what that would entail on a modern UNIX
system!). In addition to that the system came with an interactive tutoring program calledlearn , which
step by step taught you how to use the command line utilities, how to write documentation and how to
program, all the while giving helpful advice for common mistakes. Lastly the overall simplicity of the
system cannot be overstated. You could readall the documentation within a week, and even if you
continued with the source code, you would be done well before the end of the month. No wonder that high
quality documentation were produced at this time, when the system itself provided such clarity!

Some examples of other early office tools in UNIX includepr and lpr to paginate and print
documents. style and diction (called wwb in V8), were used to analyze the text and look for bad
prose and grammatical errors. Variants of these tools have survived down to this day, but are not much
used, since, like, noone wood writes good prose anyways, nowadays. And of course there wasspell for
spell checking, a problem that is surprisingly hard to solve. The original UNIX spell checker was actually a
shell script, which in modern syntax would look like this:

deroff $* | tr A-Z a-z | tr -c a-z ’\n’ | sort | uniq |\
comm -13 /usr/share/dict/words

The words file here is a database of correctly spelled words, one per line. Thelook command
searches this file, and is a quick way to check for the correct spelling of a word. The main problem with the
quaint script above is that it prints spelling errors for every word that doesn’t match the dictionary exactly.
So if ‘‘computer’’ is in the dictionary, ‘‘computers’’ and ‘‘computing’’ will not be recognized as correctly
spelled words, unless they also are added to the dictionary. Eventually a more sophisticated spell checker
was written in C, handling simple grammatical prefixes, but this version has problems as well. The
implementation is not as simple, it requires a binary dictionary which cannot easily be altered. And even
though the implementation may handle English, it is not well suited for other languages. As time went on,
even more elaborate solutions were made, deepening the problem further. For example, right-clicking a
misspelled word in Microsoft Office and selecting the correct spelling in a drop-down menu, doesn’t
actually help you learn correct spelling, it just trains your brain to click a mouse button. And when
Facebook messenger auto-corrects ‘‘Noo’’ to ‘‘Moo’’, in response to your girlfriend asking if she is fat, it
can create all sorts of problems. However simplistic the original UNIX spell checker may have been, at the
very least it wasn’t detrimental to romantic relationships.*

*) Using ancient UNIX today on the other handis detrimental to romantic relationships, but that is another story...

- 14 -

2.4. Shell

V1 V5 V6 V7 41BSD V8 43BSD V10
name src src man src src man src src src man src
osh 374 757 3 795 745 n/a
sh 3177 7.5 3147 5192 3249 7.5 5861
csh 10,075 9395 9874 25.5

The shell is arguably the main UNIX application, before GUI’s it was the only interactive interface to
the system. But more then that, the whole UNIX philosophy, and the rationale behind its design principles,
are all centered around the shell.*

The idea behind UNIX is basically that programs shouldn’t try to do everything, instead they should
focus on doing a single task. In order to complete complex tasks in such an environment you need to use
several programs in various combinations. The method for making these programs cooperate with each
other is simple, just read and write nothing but text. If the program needs to have the text formatted in a
certain way, the user can easily make any necessary adjustments with standard tools such assed , awk,
grep , sort , etc, or a plain text editor for that matter. In this way the user doesn’t need to have special
knowledge of ABI’s and binary formats, he doesn’t need to recompile programs or follow some strict
inter-process mechanisms, he only needs to know what text goes into and out of the program. Not only is
this approach simple, it turns out to be extremely powerful. Any requirements for making programs inter-
operate are just conventions, often created by the users themselves. The system does not enforce any
restrictions, and therefore there is no theoretical limit to what a UNIX program can do.

A practical example of this is the spell checking program provided in the previous section. Another
classic example is this basic, text only, alternative totar :

*) It is theoretically possible to follow the UNIX philosophy also for the GUI, but this has only been done in Plan 9.

- 15 -

echo ’# To unbundle, sh this file’
for i
do

echo "echo $i 1>&2"
echo "cat >$i <<’End of $i"
cat $i
echo "End of $i"

done

Many inexperienced users will run theecho command for the first time and think ‘‘how is this
useful?’’ Like hitting a nail with a hammer for the very first time, it may not seem all that useful, but
really, that is the first step in building a house. A UNIX system is what you make of it. For example,
waste time lamenting over the fact that therm command actuallyremovesfiles. If you want to move files
to the trash bin, just do so:mv file ~/trash . Don’t fight the scary silence ofcp and friends, relish
in it. Peace of mind and an once of boredom go hand in hand with creativity.* The above example
illustrate how easy it is to create new functionality with very basic UNIX tools.tr and commwere not
created for the purpose of spell checking, andecho and cat certainly weren’t developed in order to
replace tar . When the UNIX developers saw users doing things with their programs that they themselves
had never envisioned, they considered it definite proof that the program had been successful (most other
vendors have the exact opposite attitude). The role of the shell in UNIX is as vital as it is simple: provide
the necessary glue between programs. Unfortunately since the shell was also the only interface back then,
there was a strong desire to add interactive features to it, even though a text based interface is inherently
unsuitable for such purposes.

Early UNIX editions used the Thompson shell (referred to as ‘‘osh’’ in the table above). This was a
basic command shell. It could do redirections and simple regex, rudimentary control flow could also be
done with external commands likeif and goto , but really, it had little functionality beyond executing
programs. The BSD camp developed the C shell (orcsh) early on, to address the lack of interactive
features. It championed job control, history, substitutions and many other features that are commonplace
today. Finally in Version 7, the UNIX developers from Bell Labs, replaced the old Thompson shell with
their new Bourne shell. The newsh did adopt some features fromcsh , but their focus was not on
interactivity, but rather to produce a solid programmable shell. The C shell was initially very popular, but
it wasn’t superb for scripting purposes, and slowly descended into obscurity as newer variations of the
Bourne shell incorporated its interactive features. Today virtually all UNIX users, except for the most
ardent FreeBSD Luddite, usesh , or a descendant thereof.

The Bourne shell was a solid upgrade from the Thompson shell, but it did have flaws. Unlikecsh
which mimicked the syntax of the new and obscure C language, the Bourne shell mimicked the well known
ALGOL language from the 60’s, to make it easier on the newbies. In retrospect that wasn’t so brilliant.
Sensibly the shell has only one datatype, but it’s unfortunately a string, making arrays difficult. In addition
there are three escape characters with horrifically complex expansion rules. Commercial UNIX later
developed the Korn shell, which enhanced the Bourne shell in many ways, but backwards compatibility
prevented it from addressing many of the underlying problems, and compounded the ugly syntax even
more. The opensourcebash shell from the Linux camp later compounded the situation still. When Plan
9 was developed, the original UNIX authors decided to rewrite the shell without concerning themselves
with backward compatibility. The resultingrc shell has a C-like syntax and uses lists of strings as its
datatype, making arrays seamless, and single quotes are the only escape character. Unlike modern UNIX
shells such asbash and ksh it does not support math or interactivity. Other tools provide that, so
adding them to the shell would serve no purpose other then thickening the manual. The shell was also
ported to V10, and later to BSD and Linux. It should be pointed out that although UNIX provides a
programmable shell, the shell wasn’t meant to be a fully fledged programming language. It is merely a
glue between programs, with just enough features to automate your everyday chores. Whereas therc
manual has less then 9 pages of text,bash has nearly a 100. With the amount of effort required to learn
bash , you may as well learn a real programming language.

*) It is possible to write a program that gives you a progress bar if you want it (see thepv command).

- 16 -

2.5. Applications

V1 V5 V6 V7 41BSD V8 43BSD V10
name src src man src src man src src src man src
echo n/a 9 0.5 9 21 0.5 22 74 22 0.5 78
cat 97 58 0.5 59 56 0.5 132 55 194 0.5 58
ls 608 394 1 420 380 1.5 1382 651 616 2 595
find n/a 417 1 404 681 1.5 673 651 1232 2 672
cp 56 71 0.5 51 83 0.5 106 79 211 0.5 281
wc n/a 48 0.5 68 78 0.5 178 124 n/a 0.5 106
sed 1612 2.5 1619 1532 1625 2.5 1633
awk 2577 2 2781 3576 2834 2 4484
ar 1944 507 1 507 617 1 647 648 668 2.5 667
tar 842 1.5 862 915 1210 2 1000
sort n/a 550 1 549 830 1.5 841 962 841 1.5 1140
tail 168 0.5 187 204 202 0.5 290
ps 177 1 264 361 1 995 727 1508 3.5 989
file 224 301 0.5 354 396 459 0.5 505
grep 463 0.5 298 1280 1.5 806 1304 1381 1.5 956
date 125 160 0.5 134 148 0.5 149 142 303 1 170
bc 519 558 2 564 575 566 2 581
(pager) 1395 385 1553 3 365

As you can see, many of the classic UNIX utilities were available early on, even for Version 1
(although they behaved differently since pipes had not yet been invented...). Version 7 was the last edition
to mainly use a physical lineprinter as its terminal, and as such it did not come with a pager or a visual text
editor by default. The pagerp and the graphical text editorjim (a precursor tosam) were introduced in
the 8th edition of Research UNIX, but the BSD alternativesmore and vi were much more popular, so

- 17 -

much so that many people today mistakenly assume that these programs originally came from UNIX (other
surprising tools that originates from BSD arehead *, telnet and the lisp and pascal ports).

From the Bell Labs developers perspective these programs were too complex and too poorly
designed. As withvi and csh , more implements many interactive features (andless evenmoreso).
It was understandably tempting to add interactivity to user applications when early UNIX didn’t have an
interactive desktop, but it was nevertheless a mistake to do so. It massively bloated these programs and
distracted developers from their main purpose, it also created a plethora of inconsistent pseudo-GUI’s to the
consternation of its users. The correct solution is to create one interactive program, a GUI that integrates
well with the terminal, let this program take care of interactivity, and let the other applications focus on
their main task. This way the programs remain lean and simple while the user only has to learn one
interface. The original UNIX developers understood this well, and followed this approach as graphics
became an option, the community at large did not.

It is interesting to compare early UNIX applications to their modern counterparts, even simple pro-
grams such asecho or cat , have grown surprisingly fat on most modern UNIX editions. In fact the
proliferation of new features incat motivated Rob Pike and Brian Kernighan to write the classic essay
cat -v considered harmful(it is well worth a read). Some classic UNIX tools are blown totally out of
proportion, comparing V8 to FreeBSD for example,tar is 9 times bigger, the pager 50 times andfile
160 times bigger! These three examples illustrates nicely what happens when you:tar - add too much
functionality, less - add too much interactivity, andfile - do not follow the principal ‘‘worse is
better’’. These problems are expanded upon later in the BSD chapter.

Nevertheless some classic UNIX tools haven’t actually changed that much, such assed , awk and
grep (‘‘grep’’ here refers to all three implementations,grep , fgrep and egrep). awk was first
introduced in V7, and later extended in V8. Since then this second edition has been the de facto standard.
Some commercial UNIX brands, such as Solaris, include both editions and refer to the second asnawk
(new awk). Of course when I say that these tools haven’t changed much, I amnot talking about GNU (ei.
GNU/Linux)! The GNU editions of even the simplest UNIX utilities are bloated far beyond mortal
understanding. The GNU version ofecho for instance, is 212 lines long, has 5 include statements and 3
goto’s. In contrast V5echo looks like this:

main(argc, argv)
int argc;
char *argv[];
{

int i;

argc--;
for(i=1; i<=argc; i++)

printf("%s%c", argv[i], i==argc? ´\n´: ´ ´);
}

The /usr/src/cmd directory in V7 holds about 160 utilities, which have a combined source code
of nearly 130,000 lines, and section 1 of the manuals number 130 pages. As for V8 the directory holds
about 290 programs (of which about 190 are user utilities), with a combined source code of 360,000 lines,
and section 1 of the manuals number 230 pages. BSD 4.3 has about the same stats, as had commercial
UNIX at the time. These numbers are fairly comparable to Plan 9, but are very frugal when compared to
modern UNIX systems, which usually have two or three times as many utilities, and twenty times the
documentation! (or in the case of Linux twenty times the source code and no documentation) Sysadmins at
the time had printed editions of the manuals in their bookcase, and they actually read them. The definition
of a ‘‘guru’’ is one who can read a manual, as the old joke goes, but it’s worth mentioning that sysadmin in
the olden days actuallycould read the entire manual. This is not possible today as the manual is literally a
1000 times thicker.

*) According to Rob Pike, because the BSD developers didn’t know aboutsed 10q

- 18 -

2.6. Desktop

The original UNIX ‘‘desktop’’ was a lineprinter. These were replaced in the 80’s with screen tele-
types, essentially what we call ‘‘terminals’’ in modern UNIX. In the early days a teletype could only run
one terminal, which is why job control incsh , and window management in Emacs, were such a big hit at
the time. The advancement from screen terminals to graphical systems was fairly quick. Already in the
late 80’s commercial UNIX was tinkering with what later became X, and by the early 90’s the fully fledged
desktop environment CDE was developed. The opensource alternatives took a few more years before they
reached the same level of maturity.

Meanwhile the original design team at Bell Labs were, predictably, not impressed. X was modeled
after desktops of non-UNIX systems, which firstly, did not understand the significance of text, and sec-
ondly, were excruciatingly convoluted. Already by Research UNIX V8, the team had developed a graphi-
cal terminal called Blit. The concept was similar to the old mainframe approach, a powerful text-only
server was installed in the basement, and connected to it were a number of low-powered diskless terminals.
The difference was that these terminals could run a simple windowing system. This window system later
evolved into the Plan 9 desktoprio , which is about 300 times smaller then CDE.

The difference in focus between these two developments of graphics were paramount. While X tried
to develop a massive Windows like system full of new GUI programs that each tries to do everything, with
zero collaboration with existing programs. Blit was designed for the purpose of multiplexing terminal win-
dows. The original UNIX team exploited graphics in many interesting ways to augment the text terminal.
For example while X went to great lengths to emulate the physical limitations of teletypes inxterm , Blits
terminals behaved much like a regular GUI text editor. You can freely copy-paste and edit text using
simple mouse actions, like you would in any graphical editor. This meant that many interactive features of
the text terminal; substitutions, history, line editing etc, were unnecessary, and subsequently dropped.

One external desktop did peek their interests though, that of the Oberon operating system. At the sur-
face the Oberon desktop looks like a regular tiling window manager, but its approach to GUI’s is radically
different and unique. Text can be written anywhere inside the GUI and executed with mouse actions. This

- 19 -

design is simple and ingenious, any command line program is automatically available in the GUI, and tech
support is simply a matter of emailing the correct instructions to the user and asking him to click on them.

CDE Desktop

This design greatly inspired theacme text editor in Plan 9.

Oberon Desktop

- 20 -

Ritchie and Thompson, inventors of time (ei. 1 Jan 1970)

2.7. Programming

V1 V5 V6 V7 41BSD V8 43BSD V10
name src src src src src src src src
as ˜928 3248 3249 3319 4365 4542 6163 4412
C 253 537 770 2586 9699 15,629 19,829 17,430
F77 433 431 10,377 10,456 13,430 22,190 24,538
Pascal 2700 39,874
Lisp 52,312 59,186

Naturally, C and UNIX are two birds of a feather, but the development of C, like UNIX itself, was
gradual. The kernel wasn’t written in C until V4. It’s important to note here that the value of C back then
wasnot efficiency, but ease of use. To quote Dennis Ritchie:Early versions of the operating system were
written in assembly language, but during the summer of 1973, it [ei. the kernel] was rewritten in C. The
size of the new system is about one third greater than the old. Since the new system is not only much easier
to understand and to modify but also includes many functional improvements... we considered this increase
in size quite acceptable.After the kernel had successfully been ported to C, the developers started to view
the new language as a serious tool for system programming. The first edition ofThe C Programming
Language,fondly referred to by fans as ‘‘The Old Testament’’, was published in 1978 for V6 of UNIX.
Yet only 45% of the userland code in V6 was C, the remaining 55% being written in assembly. By V7
however 95% of the userland was written in C, the language, as the system itself, was starting to look like
the UNIX we all know and love today. Some years later (1988), the second edition ofThe C Programming
Language,aka. ‘‘The New Testament’’, describing the ANSI standard C, came out. It is the defining
reference manual for the language down to this today.

- 21 -

V7 also shipped an industry standard Fortran (F77) compiler, and arguably decent shell scripting for
the first time. Support for Pascal and Lisp were introduced in BSD at an early date, in fact the primary
motivation for developing the ground breaking virtual memory for 3BSD, was so that it could run these
memory hungry languages. By the late 80’s C++, Perl, Python, Tcl and quite a few others had sprung up.
Yet despite this wealth of options, there were, and is, only one true language in UNIX: C.

Like UNIX itself, C is largely misunderstood and under-appreciated. The purpose of C isn’t to do
everything, rather it tries to give you a simple and small language, that is fine-grained enough to manipulate
the underlying hardware directly. To quote Kernighan & Pike:C is a razor-sharp tool, with which one can
create an elegant and efficient program or a bloody mess.Higher functions must be supplied by the
surrounding ecosystem, either as libraries or as system calls. Thus C can be a good language in a good
system, but it will definitely be a poor language in a poor one. For example,cp on both modern UNIX
and Plan 9 is written in C. In modern UNIX networking is implemented as a complicated sockets interface,
and patching the C code incp so that it can copy files over the network, is a non-trivial job. In Plan 9
networking is implemented within the filesystem, socp can transfer files across the network without
needing any additional changes. Whereascp and scp in OpenBSD is 570 and 1364 lines of C code
respectively, Plan 9’scp fills both these roles and is only 179 lines of code. (and OpenBSD hasgoodC
code compared to other modern UNIX’s!)

The horrifying complexity of modern UNIX can be seen in many other areas as well, graphics and
system administration are two obvious examples,ps in Linux is about 5000 lines of C, and X about
8,000,000. In contrastps in Plan 9 is 158 lines and its window manager,rio is 5518 lines of code. The
latter programs have readable source codes, the former do not, despite being written in the same language.
The lesson here is simple, writing good code is not primarily a question of programming language. Support
for modern features such as concurrent programming, unicode, networking, graphics and more, is poor and
inelegant in modern UNIX, but very good in Plan 9, and their respective C source code reflects this reality.
Popular programming languages, such as Python, are very good at shuffling all this mess under a carpet,
giving programmers the illusion that things are simple. But the underlying operating system, not to
mention Python itself, is still written in C. So a good Python programmer that doesn’t know C, is quite
ignorant about the world, however efficient he otherwise might be. Of course none of the complicated stuff
mentioned above existed in the 70’s, and programming C in ancient UNIX is both simple and elegant.

Shell scripting should also not be overlooked. Like C, it too is a very simple tool, that relies on the
surrounding system for its power. You can domuchmore with the humble shell then you may think. If
you supply your bookshelf withThe C Programming Language, The AWK Programming Language,and
The UNIX Programming Environmentyou are well set to develop useful applications in ancient, as well as
modern UNIX.

2.8. Kernel

V1 V5 V6 V7 41BSD V8 43BSD V10
name src src src src src src src src comment
boot 1635 4244 1774 1456 startup proc.
h 1209 3688 7231 3068 3845 headers
sys 4930 12,269 14,553 20,570 6156 kernel facilities
dev 6687 15,580 29,285 41,022 21,915 device drivers
net 4592 10,834 4195 network
(misc) 2788 2425 7512 11,013 18,962 miscellany
sum 3976 7261 9019 15,614 35,597 67,417 88,281 56,529 in total

A good text book on the early UNIX kernels is the legendaryA Commentary on The Sixth Edition
UNIX Operating Systemby Lions. Of newer era isThe Design and Implementation of The 4.3BSD
Operating System,and The Design of The UNIX Operating System,which focuses on the AT&T UNIX
System V Release 2. Although over 30 years old now, these latter books actually describe operating system
fundamentals that are still quite relevant today. And because they describe systems much simpler then our
modern counterparts, they are comparatively easy to read and understand.

- 22 -

As an alternative, you can look into Xv6 from MIT. Xv6 is a rewrite of UNIX Version 6, using mod-
ern C and targeting the RISC-V architecture. Like Lions book, it has a line-by-line commentary of the
code. The operating system is less practical then V6 was, but is much easier to learn, since you don’t need
a ton of historical context to understand it.

As you can see in the statistics above, the kernels for these ancient systems were tiny, one reason
being that there were virtually no device drivers required. Prior to V7, UNIX only supported one machine,
but even after that very few computers, with few devices were available. One of the greatest innovations of
UNIX was to represent everything, including hardware devices, as files. Largely as a result of this innova-
tion, modern UNIX systems can include drivers for virtually all hardware known to man in less then 100
Mb, a feat that would be totally unthinkable in Windows. As devices became more complex however,
compromises to this design principal were made, such as ioctl, sockets and pseudo files, making modern
UNIX systems that much more complex and obtuse. (although not analyzed in detail here, the commercial
System V kernel from AT&T had about the same complexity as the contemporary BSD versions*) Many
developers thought that such compromises were necessary to make modern hardware work, but that wasn’t
the case. Plan 9 demonstrated in practice that modern hardware can be represented as plain files, as long as
the system is thoughtfully constructed, and not just haphazardly McGyvered together to run as fast as
humanly possible. Presenting modern innovations such as graphics, audio and networks as plain files, dra-
matically increases the power of the shell and the C language, but we will talk more about this in the
upcoming Plan 9 section.

To quote Kernighan and Pike, Anno 1984:The UNIX system has since become one of the computer
market’s standard operating systems, and with market dominance has come responsibility and the need for
‘‘features’’ provided by competing systems. As a result, the kernel has grown in size by a factor of 10 in
the past decade, although it has certainly not improved by the same amount. This growth has been
accompanied by a surfeit of ill-conceived programs that don’t build on the existing environment. Creeping
featurism encrusts commands with options that obscure the original intention of the programs. Because
source code is often not distributed with the system, models of good style are harder to come by.These
problems has persisted and deepened in modern UNIX, compared to V7, the Linux kernel has grown by a
factor of more then a 1000, although it has certainly not improved by the same amount, and models of good
style are increasingly hard to come by, even in systems where the source codeis available.

Lets be clear here. Ancient UNIX was in no way a ‘‘perfect’’ system, it had bugs and warts all over
the place. But it was a powerful and simple operating system. Refining and debugging, or for that matter
rewriting, a system is all well and good, as long as you don’t double the source code in the process. We
may perhaps conclude with another quote from Kernighan and Pike:One thing that UNIX does not need is
more features. It is successful in part because it has a small number of good ideas that work well together.
Merely adding features does not make it easier for users to do things - it just makes the manual thicker.
The right solution in the right place is always more effective than haphazard hacking.UNIX had 500
pages of manuals when they wrote this, today it has 50,000.

*) Hopefully that tidbit of information did not give away any important trade secrets.

- 23 -

3. PLAN 9 and INFERNO

Plan 9 from Bell Labs, initially released in 1992 was created by the original authors of UNIX. It was
a research operating system like its predecessor, written from the ground up with the aim of bringing the
ideas of UNIX into the modern world of computers. Graphics, unicode, networks and multi-core proces-
sors did not exist when UNIX was first developed in the 70’s. And the implementation of such things later
did not follow the original design principals that these authors had set down. Thus they felt the need to
rethink the operating system, to quote Rob Pike:Not only is UNIX dead, but it’s starting to smell bad!Plan
9 demonstrated that a modern graphical and networking system was possible using the UNIX design
philosophy (eg. everything is a file). Bell Labs discontinued the project in 2015.

Plan 9 isn’t quite dead though, more like undead. Recently, The Plan 9 Foundation
(https://p9f.org) was set up to continue development, but as of yet, little has happened. 9front and
9legacy are two of several community forks, that sprang to life around 2010, the former is radical in its pur-
suit of new features (such as hardware support), whereas the later tries to stay true to the original form like
a stubborn caveman. We will also mention additional forks that are a bit unusual in our analysis: Harvey
and JehanneOS are ports of the Plan 9 code to GCC, it is intended to be run on top of UNIX using the
qemu virtual machine, but all its files are stored locally on the host. In theory this port could make it easier
to add UNIX software to Plan 9, but it’s early days and the projects aren’t quite there yet. Meanwhile
Plan9Port goes in the opposite direction, as the name suggests, it is not an operating system but a port of
Plan 9 applications to UNIX. The project is both mature and practical, but limitations in UNIX does not
allow for a full emulation of the Plan 9 experience.

Finally, Inferno was developed in tandem with Plan 9, by the same group of developers. Although
many aspects of the two systems are similar, and they even share some code, Inferno had very different
goals. It was developed as a commercial product and often compared to Java, since it too ran as a virtual
machine and offered uniform programming resources on many different platforms. But Inferno goes
beyond that and provides a fully functional operating system. It was written in an entirely new language
called Limbo, a precursor to Go. The system had some very innovative ideas, even the name is quite provi-
dential, as it all went straight to hell due to damned finances. Bell Labs eventually discontinued the project

- 24 -

and abandoned it to opensource, where Inferno has remained in limbo ever since. Recently, the 9front
developers have dug up the corpse and done some promising experiments with it. One of their forks,
9ferno, can now build on 64-bit architecture, and hopefully, we might see further improvements still. In
this chapter we will use application statistics from 9front and 9ferno, but their numbers should be more or
less identical to the classic Plan 9 and Inferno systems.

Acme the do-it-all application

3.1. Text Editors

9front 9ferno
name src man src man
hold 5 0.5
ed 1405 6.5 1391 n/a
sam 6236 8 2210 n/a
acme 12,664 8 14,378 12.5
wm/edit 617 ˜0
wm/brutus 3873 1.5

ed of course is the standard UNIX editor, in Plan 9 it has been modified to handle unicode and use
the systems standard regex library, which is similar to that ofegrep in UNIX. sam is essentially an
extension of theed command language plus a detachable GUI. It can perhaps be compared tovi , but the
GUI is entirely mouse driven and considerably simpler.

acme on the other hand as the name suggests tries to do everything. It is used as a text editor and
IDE, a terminal, a mail client and a file manager. The editor is heavily inspired by the Oberon operating
system, where text can be typed anywhere into the GUI and executed with a mouse click. The idea may
seem alien at first, but it is simple and intuitive once learned. The benefit of this approach is that it ties the
editor seamlessly into the surrounding environment (the text mangling functionality ofsam is incorporated
in the built-in Edit command).

- 25 -

For example to select all the text in a file, type and middle clickEdit , . This is essentially the
same as:% in vi . To get word count statistics of your file, just type and middle clickEdit ,| wc .
Or if you want to rot13 some text, just select the text you want to edit, then type and middle click| tr
a-zA-Z n-za-mN-ZA-M . I’m sure you can think of many other ways to mangle text using standard
UNIX tools. But typing in long commands for routine operations quickly becomes tedious, so make a
script for it, just as you would in a shell. The followingt+ script will indent the selected text for instance:

#!/bin/rc
t+ - indent input
usage: t+ <input >output
sed ’s/^/ /’

With this in place you can indent text inacme just by selecting the text in question and then middle click
|t+ . In addition to having all textual programs instantly available in the editor,acme, like the window
manager rio , and indeed Plan 9 itself, is actually controlled by writing text strings to a set of files. This
allows you to easily script the editor itself. For example, if you wanted to clear a terminal window in
acme of all text, you could manually writeEdit ,d (that is :%d for all you vi users out
there), anywhere in the window, highlight the text with your mouse and
then middle click it. But we can do all of that automatically with a
simple script:

#!/bin/rc
echo -n Edit ,d > /dev/acme/body
echo -n /Edit ,d/ > /dev/acme/addr
cat /dev/acme/addr | awk ’{ print "MX", $1, $2 }’ > /dev/acme/event

MX here refers to a mouse middle click in the body of text, it is followed by the start and end location of the
selected text, which/dev/acme/addr provides for us once we have written the regex we are looking
for into it. Here is another example: Suppose we have written a text only slide show with files called1, 2,
3.., and so on. Usingacme as a filemanager, we can right click our way to the slides and just click on1
to open the first slide. We could in theory navigate to the next slides manually, by editing the ‘‘1’’ in our
filename to ‘‘2’’, type the commandGet and middle click it. We would have to do so twice, sinceacme
will warn us about loading a file if the current content is different. This is cumbersome, so lets automate
the process:

#!/bin/rc
page=‘{echo ‘{basename $%} + 1 | hoc}
if(test -f $page)

for(cmd in ’name ’‘{pwd}^/$page’’ clean get)
echo $cmd > /mnt/acme/$winid/ctl

$%here is a specialacme variable that refers to the current absolute filename, if for instance our file is
/usr/dan/lib/slides/2 then basename $% will give us 2. hoc is a calculator, you can also use
the old UNIX warhorsebc if you want. You’ll note that theacme control files in this example is in a
different location then the previous example./dev/acme points to your current acme window,
whatever that may be. /mnt/acme/$winid however points to a specificacme window using its
unique ID number. The important point here is that each Plan 9 process has its own namespace, so
/dev/acme for instance, can mean different things to different processes, but there are still ways to
specify which process you mean if you need to. Anyway, the last for loop here sets a new name, tells
acme not to mind the fact that the content is different, and finally asks it to load the new file. Assuming
we call this script Slide+ , all we have to do to step through our slide show is to middle click this
command

We have really just scratched the surface with our examples here, I am sure you can think of more
complex and useful scripts to write, anawk script to handle spreadsheets perhaps? Or maybe a script
playing through, and otherwise manipulating, a playlist of audio files? It wouldn’t be too hard to do. The
crucial point to grasp here is thatacme is seamlesslyintegratedwith the environment around it. It does
not have its own weird internal scripting language or obtuse ABI, you can script it using programs that the
system already provides, writing and reading text to plain files. Just as the UNIX philosophy gives

- 26 -

tremendous power to shell utilities that follow its principals, so it gives tremendous power to GUI programs
that adhere to it. It is relatively easy to extendacme with sophisticated applications. The fully functional
Mail client for instance is just over 2000 lines of C. Yet all the poweracme provides is combined with a
remarkable simplicity, the manual is only a few pages long and the source code a hundred times less then
that of GNU Emacs. Is it any wonder then thatacme has been described as ‘‘Emacs done right.’’

Inferno also includes these editors, although it doesn’t seem like thesam port was fully completed.
In addition it ships with the Notepad and Wordpad likeedit and brutus , in all probability, to soften
the blow for unsuspecting Windows users.brutus is a WYSIWYG SGML editor (ei. a ‘‘Wordpad’’ for
DocBook), which actually can be kind of useful. Note also that creating Notepad in Inferno only requires
619 lines of code, in contrast ReactOS version of Notepad is over 8000 lines of C, andleafpad in Linux
is over 18,000 lines. Speaking of simple text editors, 9front includes a very basic text editor calledhold ,
here is the source code in its entirety:

#!/bin/rc
{

echo holdon >[1=3]
cat $1 > /dev/cons
cat /dev/cons > $1

} >[3]/dev/consctl

The reason you can write such a ludicrously simple text editor in Plan 9 is because the terminal
already behaves very much like a text editor, so the only thing you need to do is print the file and then save
any text subsequently written afterwards on the terminal. (So to ‘‘edit’’ the file, copy paste it first, then
make changes to the copy) True, it’s a bit clunky, but hey - it’s a text editor written in five lines of shell
script!

3.2. Internet

- 27 -

9front 9ferno
name src man name src man
abaco 6375 0.5 charon 21,556 6
mothra 7274 2.5 collab 2676 3
upas 35,081 3 wm/telnet 715 0.5
ircrc 234 2 wm/readmail 788 -
ssh 1263 1 wm/sendmail 576 0.5
hget 105 2
hpost 208 -

The Plan 9 documentation mentions several places that internet browsers are a work in progress, and
is essentially an unsolved problem. Things did not improve when the developers abandoned the operating
system.* 9front ships with their rewrittenmothra browser in addition to the classicabaco browser.
Neither do anything except read plain HTML.abaco have been dropped in Harvey and Plan9Port,
instead theweb script in Plan9Port launches whatever default UNIX browser you are using. It would have
been nice to have a web browser inacme, but realistically this isn’t feasible. Although you can do a
simple text dump of a web page, assuming of course the unlikely event that the web page in question is in
readable HTML: wurl2txt http://www.website.com

Since Inferno was intended for actual human beings, more effort was made to create a ‘‘modern’’
web browser, unlike its counterparts in Plan 9,charon has rudimentary JavaScript support. Nevertheless
this was done a very long time ago, and the browser is now unmaintained and fairly broken. Using it will
frequently crash the system. It is in my opinion considerably worse then the Plan 9 browsers, which at least
fails with less noise.

The mail client and server in Plan 9 is calledupas . Setting up a working mail server requires a bit
of work, but it’s not too bad, the 9front FQA gives helpful hints in section 7.7. Once configured, the
command line mail , and the acme Mail clients are easy enough to use, and can even interface with
GMail. 9front also includes a handful of useful shell scripts, in addition to the aforementioned
wurl2txt , you have scripts such asircrc , hget , hpost and webpaste , which is an IRC client, a
simplistic wget and curl clone, and a pastebin shortcut, respectively. Wait... an IRC client and a
curl implementation as ashell script?!? Oh yes. You can do amazing stuff with Plan 9, here is an
implementation oftelnet :

#!/bin/rc

clonefile=/net/tcp/clone

if(! ~ $#* 2) {
echo Usage: telnet ip port >[1=2]
exit usage

}

<[4] $clonefile {
netdir=‘{basename -d $clonefile} ^ / ^ ‘{cat /fd/4}
echo connect $1|$2 >$netdir/ctl || exit ’cannot connect’
cat $netdir/data &
cat >$netdir/data

}

Note that the last examples are programs written in an attempt to make Plan 9 more compatible with
external operating systems. Such support is fairly poor in classic Plan 9 and Inferno, for instance Plan 9 has
an ssh client and NFS support, but only for the practically deprecated version 1 and 3 of these protocols.
Only 9front supports the 2nd version of thessh protocol. The reason for this lacking support, beyond

*) Update, 9front recently ported the NetSurf browser, which mitigates this problem somewhat.
) That is not a typo, the 9front user guide is called ‘‘Frequently Questioned Answers.’’

- 28 -

code rot, is that the developers considered such external technologies as a bit daft. Plan 9, and Inferno,
themselves are largely network and security agnostic, since these things are implemented in the filesystem.
You don’t connect to a remote Plan 9 machine withssh or ftp , you just import its filesystem. As for
chatting, you can easily write a peer to peer chat program using nothing butecho and tail .

Inferno has a few tools for communicating with external systems, such as telnet and mail programs,
but it’s doubtful that they will find any practical use today. It also includes a collaboration suite of pro-
grams, such aschat and whiteboard , but these programs can only talk to other inferno clients, which
makes them about as useful as a Klingon-only peer to peer service.

At this point we may also pause and reflect on the futility of even trying to recreate a popular web
browser in an alternative OS. The team who worked oncharon were not merely experienced
programmers, they had been developing operating systems and programming languages for three decades,
and yet they failed miserably. mothra and abaco are smooth and elegant in comparison, but they are
also literally 5000 times smaller then Firefox. I find that most people are surprisingly naive about the web.
‘‘why haven’t the programmers developed a decent browser?!?’’.Why indeed. How do you suppose the
programmers could develop something akin to Firefox, when the source code for that browser is thirty
times larger then the entire Inferno project, kernel, libraries and userland combined?

Not coincidentally the modern web flies totally in the face of the UNIX philosophy. Why can’t you
grep for webpages using regex? Why can’t youcat a webpage, or nicely format it withfmt ? Why
can’t you customize webpages using shell scripts, or edit them using your favorite editor? Why doesn’t
your browser come with a manual? How wonderfully productive the web could have been, but alas, it’s an
overblown entertainment system of filth.

3.3. Office

9front 9ferno
name src man name src man
troff 9279 2 cook 1770 1
(prep) 17286 11.5 brutus 3873 1.5
spell 1475 1 ebook 4367 1
dict 7322 1.5
lp 1028 3

- 29 -

There is only one ‘‘office suite’’ in Plan 9, good ’oltroff . troff is easily one of the most
underrated programs on the planet. It is extremely rare nowadays to see anything but manpages written in
it (and even that is sadly scarce), but the document preprocessor is capable of producing professional
documents in PDF or HTML. Many of the reference books mentioned in this article are written introff ,
and in fact the article you are reading now has been written introff on a Plan 9 machine. Thanks to
unicode support in the Plan 9 version of this tool, you can easily write documents with exotic characters as
well, something that isn’t easily done in Tex or DocBook.

The biggest hurdle to overcome when learning to usetroff , is simply that it’s a markup language.
So the code must be written first, and then you can compile it to PDF or HTML. But this is easier then it
sounds, the manual forms, providing generic article macros totroff is only 3 pages long. The syntax
is also easy: write a macro ortroff command, such as.SH for a section header,.LP for a left-
adjusted paragraph, or.PP for an indented paragraph, on a line by itself, then add the contents verbatim
after it. That’s it. This syntax fits perfectly with the UNIX tools, for example, to print out the raw text
from an ms document: sed ’/^\./d’ doc.ms | fmt , or the section headers and their line
numbers: grep -n ’^.SH’ doc.ms . In contrast, LibreOffice’s ODT format uses unreadable XML.
Below a short letter is written introff . The troff code constitutes 5% of the text. In comparison, the
same letter in Markdown would contain 7% syntax code, LaTeX 34%, HTML 83% (minimum), DocBook
122%, and lastly, ODT 15,824% (no, really!). Only Markdown is even close to competing withtroff in
terms of ease of use, but it certainly cannot compete with its power.

Example letter introff :

.SH
Hello grandma!
.LP
Hi, just wanted to ask how you are doing?
How’s the knitting progressing?
I’m still using the sweater you made me last winter,
it’s keeping me warm and cozy :)
.PP
Sent to you by my Plan 9 box

Result:

Hello grandma!

Hi, just wanted to ask how you are doing? How’s the knitting progressing? I’m still using the
sweater you made me last winter, it’s keeping me warm and cozy :)

Sent to you by my Plan 9 box

Another tricky problem in troff is that much of the functionality is spread across multiple
commands. For example, if you want tables or math equations in your document, you need to run the
document through thetbl and eqn preprocessors first. Luckily, Plan 9 comes with a handy script that
automates this for you. Runningdoctype doc.ms will print the commands required to convert the
document to postscript. So to read the document inpage , all you need to do is:doctype doc.ms |
rc | page or you can export it to PDF:doctype doc.ms | rc | ps2pdf > doc.pdf . As
mentioned troff is a seriously underrated program. It is nearly a 1000 times smaller thentexlive ,
but for casual usage it gives you basically the same functionality. Withtroff you can convert a
thousand page book to PDF long before LibreOffice has even finished its loading screen.

troff has not yet been ported to Harvey, but it is available in Plan9Port. There are subtle
differences though, for instance you need to tell Ghostscript where it can find the Plan9Port specific fonts.
The easiest way to do this is withpsfonts . To demonstrate: doctype doc.ms | rc |
tr2post | psfonts > doc.ps; ps2pdf doc.ps; xpdf doc.pdf . The unicode aware
Plan9Port troff is actually a very nice and sane replacement for GNUgroff .

As for Inferno you can read manpages locally withman -f , but it does not includetroff itself
or any other macros thenman, so it isn’t practical for general documentation. As mentioned Inferno does
come with an SGML (aka. DocBook) editor calledbrutus , it also includes a tool calledcook that can

- 30 -

convert SGML to HTML or LaTeX. The output formats are hopelessly outdated however (using HTML 3
for instance), and the editor is somewhat fidgety. Nevertheless it does work, and it’s somewhat surprising
that UNIX has no such equivalent. Inferno also include tools for reading and writing EPUB’s, but these too
are very outdated. Sadly Inferno has been neglected for a long time. But in its time, it was a very nice
complement to Plan 9, and with the recent 9ferno and Purgatorio forks, it may perhaps thrive again.

Printing

There are no printer commands in Inferno, which makes sense, since it’s much more practical to just
use whatever printer command the host system provides. There are no spell checkers or dictionary tools
either, although the tools needed to create such programs are certainly there. (see discussion below)

Plan 9’s printer command islp (equivalent to lpr in UNIX). Driver support for physical printers
are very limited, but you can print output as a postscript file:lp -dstdout file > file.ps . And
if you have a UNIX machine nearby hooked up to a printer, you can always just do:lp -dstdout
file | ssh unixpc lpr

Spell checking

Plan 9 includes a spell checker calledspell and a dictionary program calleddict , similar to
WordNet in UNIX. (to use it, some 3rd party resources must first be installed - see/lib/dict .) As for
the old Writers Workbench, aka. diction , there is sadly no such thing in Plan 9. The spell checker
also has limitations, it only supports English, and worse, it uses binary dictionaries without support for
local wordlists. You can however write your own custom spell checker easily enough:

deroff * | tr A-Z a-z | tr -c a-z ’
´ | sort | uniq | comm -13 /lib/words -

This is especially handy for non-English languages. For example, to spell check my Norwegian doc-
uments, I first import theaspell dictionary as plain text from a UNIX machine:ssh unixpc |
’aspell -d nb dump master | aspell -l nb expand’ | tcs -f 8859-4 | sort
> /lib/words.no . With this in place some simple Norwegian spell checking functions might be:

fn lower{ tr A-ZÆØÅ a-zæøå }
fn words{ tr -c ’a-zæøåA-ZÆØÅ’’’ ’
´ | tr -d ’’’’ | sort | uniq }
fn nospell{

dict=/lib/words.no
if(test -f words.no) dict=words.no
for(word in ‘{deroff $* | lower | words | comm -13 $dict})

if(! grep -s ’^’$word’$’ $dict) echo $word
}

The above functions are fairly self explanatory (unfortunatelygrep is necessary here sincecomm
will not handle non-English characters well). Thenospell command will detect the presence of local
dictionaries and use them. You can easily write a script that scans your documents and auto-generates such
a local dictionary based on the master dictionary. Beyond optimization, it is sometimes useful to have
project specific wordlists. For example, almost 15% of the unique words in the document you are reading
right now, are words that I don’t want to add to my master dictionary, but that I nevertheless want to check.
This includes words such as ‘‘xvesa’’, ‘‘wiley’’, ‘‘vax’’, ‘‘thompson’’, etc.

Of course, our script is very basic.* It has no understanding of grammar or word prefixes, and it will
only print a list of presumable misspellings, with no clue as to how they are meant to be spelled. But with a
sufficiently large master dictionary, the script works surprisingly well, even on par with the LibreOffice
spell checker. Beyond flexibility, our solution has the added benefit of training our brains to spell cor-
rectly, as we need to manually fix our own spelling mistakes.

*) Classic Shell Scriptingfrom O’Reilly, pages 331-349, demonstrates how to write a more intelligent spell checker in awk,
if you are interested.

- 31 -

TrOffice

Spreadsheets, accounting, databases, graphs, etc...

So you can write documents in Plan 9. Big Woop. What about spreadsheets, graphs, databases and
the like? Well, have you heard ofawk? Suppose you have exported your personal accounting in
LibreOffice Calc to CSV:

Date,Expenses,Category,Comments
2020-07-30,1000,rent,i hate paying rent...
2020-08-01,24.50,food,grocery store
2020-08-02,1.35,travel,buss ticket

To find out how much money you spent in August, or just how much you spent on food in August, you can:

awk -F, ’NR>1 { sum+=$2 } END { print sum }’ account.csv
awk -F, ’$1=/2020-08/ && $3=/food/ { sum+=$2 }

END { print sum }’ account.csv

Creating a personal account script, or even a general purpose CSV editor, would not be hard. But
wouldn’t it be nice to actuallyseethese values in a nice graphical table? As long as you don’t need an
interactive table, this is easy too:

- 32 -

cat << end > account.tbl
.TS
expand center allbox;
c c c c
l n l l
.
end

sed ’s/,/ /g’ account.csv >> account.tbl # whitespace here is a tab
echo .TE >> account.tbl
tbl account.tbl | troff | page

If you want a nice graph of your food expenses in the first 8 months of 2020, you can run these commands:

echo .G1 > graph
echo draw solid >> graph
for(month is ‘{seq 8}){

awk -F, ’$1=/2020-0’$month’/ && $3=/food/ { sum += $2 }
END { print sum }

’ account.cvs >> graph
}
echo .G2 >> graph
grap graph | pic | troff | page

See the tbl (1) and grap (1) manpages to understand what is going on (they are only 3 pages
each). The point here, is that even though Plan 9 has no interactive office tools, you can nevertheless
accomplish advanced office tasks with relative ease. On my own Plan 9 box I have written a small script
that can take any generic CSV file and produce a graphicaltbl table. The most difficult part of this is
figuring out what kind of content each column should have, and to break up a long table into smaller
chunks, sincetbl will not handle tables that overflow the page well. With these caveats in mind, the
script is still only 40 lines of code. troff can do other things as well, for example, check out the
eqn (1), pic (1) and mpictures (6), to see how you can add math equations, pictographics and pictures
to your office documents. What about databases? On page 109 ofThe Awk Programming Languageby
Aho, Weinberger and Kernighan (hence the name a-w-k) they demonstrate how you can build a general
purpose SQL database with 50 lines ofawk. Of course, you can also just write your databases inndb (8).

3.4. Shell

9front 9ferno
name src man name src man
rc 5321 8.5 sh 8534 17
ape/sh 15,560 - mash 7263 13

tiny 533 4

For compatibility reasons, Plan 9 has apdksh like shell in ape/sh , but the systems default shell
is rc (run command). rc was written from scratch to replace the UNIX shell. The biggest difference
between the two is thatrc uses a C like syntax, and that it represents all arguments as lists, making array
operations seamless. All in all the Plan 9 shell is very elegant, it has added vital functionality missing in
the old Bourne shell, while removing all the warts. It does not however support any math operations or
interactive features, such as job control, history substitutions or line editing. These features are provided by
external tools. For example the window manager provides a text-editor-like window for the shell, making
substitutions unnecessary, just edit and copy-paste as you would in a normal text editor. It also provides a
full copy of your shell session in/dev/text , so printing your command history is simple:grep
’^;’ /dev/text (assuming that your prompt is ‘‘; ’’). The window manager provides job control, and
hoc (or bc) takes care of mathematics.

Here are some other fun examples: The"" command (no, that’s not a typo, double quotes have no
special meaning in Plan 9) in 9front is a 9 line shell script mimicking!! in UNIX (rerun previous
command). Adjusting this script to mimic the!$ or ^^ commands would be easy enough. As for

- 33 -

clear , script and xclip you can do all that with:

cat > /dev/text
cat /dev/text > typescript
cat text > /dev/snarf

The clipboard in Plan 9 is called the ‘‘snarf’’ buffer. However brilliant the UNIX developers were,
they did have a quirky sense of humor (the name of this operating system is derived from Ed Woods leg-
endary B horror moviePlan 9 from Outer Space,and I am not even going to tell you about their mascot...).

Inferno’s sh shell, not to be confused with the ‘‘sh’’ Bourne shell, is very similar torc , but like
the operating system itself, is more modular. You can for instance integratesh with the graphical Tk
toolkit and manipulate desktop applications, making it somewhat reminiscent of Tcl/Tk. There are other
modules for math and string manipulation etc, in fact the shell has an FFI to Limbo, meaning that any
compiled module or library in Inferno can be loaded directly from its shell. Now that istruly next
generation scripting! mash is the old version of this shell, whereastiny is a stripped down shell,
created for working on memory constrained systems. That consideration is a bit humorous when the
‘‘bloated’’ sh shell is half the size ofdash !

Example of Shell Syntax

pdksh rc inferno-sh
echo ${a}string echo $"a^string echo $"a^string
rm *.{mp3,ogg} rm *.^(mp3 ogg) rm *.^(mp3 ogg)
alias user="echo $USER" fn user{echo $user} fn user{cat /dev/user}
end(){ fn end{ fn end{

shift && echo $* shift && echo $* echo ${tl $*}
} } }

set -A a hi guy\! a=(hi guy!) a=(hi guy!)
echo $((${#a[@]}+1)) echo $#a + 1 | hoc echo $#a + 1 | calc

for w in ${a[@]}; do for (w in $a) { for w in $a {
echo -n "$w " echo -n ’’$w’ ’ echo -n ’’$w’ ’

done } }

if [${#a[@]} = 0] if(~ $#a 0){ if{~ $#a 0}{
then exit 1 exit empty exit empty
else } if not { }{

v=${a[1]} echo bye $a(2) | echo bye ${index 2 $a} |
echo bye ${v%!} sed ’s/!//’ sed ’s/!//’

fi } }
echo $? echo $status echo $status

while true; do while(){ while{}{
(subproc) @{subproc} @{subproc}

done } }

case "$1" in switch($1){
(Abe|Bob) echo Hi case Abe Bob if {~ $1 Abe Bob}{

;; echo Hi echo Hi
Carl) echo Hey case Carl }{~ $1 Carl }{

;; echo Hey echo Hey
*) kill -s KILL $$ case * }{

;; echo kill>/proc/$pid/ctl kill ${pid}
esac } }

- 34 -

3.5. Applications

9front 9ferno
name src man src man
echo 28 0.5 33 0.5
cat 29 1 42 0.5
ls 290 2 289 2
cp 178 1 214 0.5
wc 315 0.5 271 0.5
sed 1258 4 809 -
awk 6275 5
tar 1229 2
sort 1506 2.5 118 0.5
tail 325 1 340 1
ps 149 1.5 51 1
file 1500 1
grep 1520 1.5 135 1
date 57 1 63 4.5
hoc 1897 1.5
calc 2383 3.5
p 81 0.5 127 0.5

You will find many of the expected UNIX commands in Plan 9 and Inferno, but beware that they
behave differently and unpatriotically (few flags), so keep an open mind.hoc and calc are similar to
bc , while p is similar to more in UNIX. As you can see, a few common UNIX utilities are not provided
with Inferno, but theos command lets Inferno run applications from the host operating system it’s running
on. To add awk to your Inferno system for instance, just write this shell script:

- 35 -

#!/dis/sh
if { ~ $#* 1 } { file = /fd/0 } { file = $2 }
os -d $emuroot^‘{pwd} awk $1 $file

The /sys/src/cmd directory in 9front contains about 160 utilities (not including subdirectories).
These have a combined source code of 65,000 lines and manuals numbering 140 pages. 9legacy and
Harvey has 130 utilities, 50,000 lines of code and 130 pages of manuals. Plan9Port has about 80 utilities,
26,000 lines of code and 230 manual pages. The/appl/cmd directory in Inferno holds about 150
utilities, with 46,000 lines of source code and 140 manual pages.

The source code here is about four times smaller then BusyBox, although the functionality is much
greater. What makes Inferno and Plan 9 tools especially powerful, isn’t the tools themselves, but how the
operating system connects them together. Networks are presented as plain files for instance, socp also
does the job asscp in UNIX. Remote chat clients can be written withecho and cat , window manager
utilities too for that matter.

Lets compare some of these numbers to their Linux counterparts. GNUsed and grep are about
150 times larger then the Plan 9 versions, but they do pretty much the same job. The Plan 9 versions are in
my opinion slightly better since they have proper handling of unicode, and use a standardegrep like
regex library. ps is 30 times bigger. (to be fair the BSD versions ofgrep are about the same size,
sed twice as big andps ‘‘only’’ 10 times larger) Plan 9 presents process information in/proc , and its
version of ps just reads these files. Linux adopted theproc filesystem from Plan 9, but few utilities
actually use it, worse still, the implementation presents a significant security risk since these files can be
seen by all programs (which is why the BSD’s don’t use it by default). In contrast each process in Plan 9
has its own private view of the filesystem, so it’s easy to shield parts of the system from processes if you
need to. This example illustrates why the developers felt that UNIX needed to be rethought. You cannot
‘‘fix’’ UNIX simply by adding Plan 9 technologies to it, it just adds to the mess. To fix UNIX, you need to
removestuff!

More Applications

9front 9ferno
name src man name src man
zuke 1689 2 wm/mpeg 4731 2
play 99 0.5 wm/wmplay 158 -
page 1630 2 wm/view 402 0.5
paint 746 1 wm/dir 459 -
games/snes 4336 2 wm/tetris 730 0.5
games/mines 3177 1 wm/snake 334 -
games/sudoku 932 1 wm/sweeper 274 ˜0

There are only a few GUI applications in Plan 9, such as the document and image viewerpage , the
music player juke ,* the infamous catclock and a handful of simple games. Much of the traditional
desktop functions are provided byacme and the shell, for example,acme can be used as a file manager
and an email client, and shell tools such asdate and bc provide a clock and a calculator. When it comes
to 3rd party applications, Plan 9 doesn’t have a package repository per se. A community repository of
about 100 contributors were provided by Bell Labs. The contributions were in source form and required
some assembly to install. The server has since closed down, but the contents are still accessible from
https://9p.io . A lot of this old software will not compile on 9front though. This fork provide their
own, smaller but not totally insignificant, set of extra packages on their web site.

As for Inferno, it has a more traditional desktop feel and ships with more GUI tools.mpeg, avi
and wmplay are used to play videos and music, but the tools are old and unmaintained, and limited audio
drivers make them virtually impossible to use. An image viewer, file manager and several other utilities are

*) 9front uses zuke and play instead.

- 36 -

also provided. The documentation talks about 3rd party applications, and the developers clearly wanted to
facilitate such development. But the project failed commercially and no repository of additional packages
were ever made. Some developers, such as MJL, have released extra software for Inferno on their private
github repositories, but that is rare.

The absence of a large repository of precompiled packages may shock UNIX (well, Ubuntu) users,
but keep in mind that these operating systems arenot UNIX. Backwards compatibility was not a goal, and
many practical necessities that UNIX developers take for granted, are not provided in Plan 9, such as links
and user ID numbers, not to mention X. Porting applications from UNIX to Plan 9 is possible, but non-
trivial. In any case, if you really did port all the UNIX software to Plan 9, fleshing out all the libs and
patching the kernel to Kingdom come, the system would become an inconsistent and bloated behemoth,
exactly like UNIX. Plan 9 is differentfor a reason!

3.6. Desktop

Plan 9 Inferno
name src man name src man
rio 5382 6 wm 609 2.5

Plan 9 and Inferno each have their own window manager.rio is very minimalistic and is
reminiscent of twm in appearance. But it has some unique features not found anywhere in UNIX.
Although it is interactively used solely by mouse action, it presents a number of plain text control files.
You can thus easily create window manager shell scripts to handle such things as auto startup or window
tiling for example.

New windows in rio are always terminals, when executing a GUI program, the terminal window
morphs into this application. In this wayrio windows naturally gain a pseudo-tilling ability. You just
create the initial windows where you want them, and then run whatever programs you wish in them, they
won’t normally be resized or moved. No popup windows exist in Plan 9 either to distract you or block your
view. If you want to make your setup permanent, runwloc and use that as a basis for editing therio

- 37 -

startup file $home/bin/rc/riostart. Supposing you want anacme window taking up the left
half, and a terminal window taking up the right half of a 1920x1080 screen at startup, yourriostart
would look something like this:

#!/bin/rc
window -r 0 0 960 1080 acme
window -r 960 0 1920 1080 rc

Of course this is just a shell script, so you can create however manyrio startup files as you want, one for
every type of configuration. rio can also run inside ario window, thus providing you with an easy
workspace mechanism. Using the terminal in Plan 9 is a requirement, and many common tasks are done
with basic shell commands such asecho or cat , here are a few examples:

echo resize -r 0 0 1600 900 > /dev/wctl # maximize window on 1600x900 screen
echo master 100 100 > /dev/volume # set speaker volume to maximum
cat /dev/window > sshot_window # take screenshot of window
topng < /dev/screen > sshot_screen.png # take full screenshot as PNG
sleep 600; echo BUGME > ’#c/cons’ # send notification in 10 minutes

Plan 9 doesn’t have any graphical toolkit, instead it provides a low level graphics library. The desk-
top was really designed with the purpose of running terminals. In additionacme, arguably Plan 9’s main
user application, was designed to do everything. Consequently very little attention is given to traditional
GUI designs. No doubt new users will find this alienating, but it lies at the very heart of the systems
simplicity and elegance. The source code in/sys/src/libdraw totals 6000 lines of code, and cover

Plan 9 Desktop

just 14 pages in the manual.

The most interesting thing about Plan 9’s humble window manager is that it is controlled by writing
text strings to a set of files. This makes it very easy to write window manager scripts. To give an example;
rio does not have the ability to automatically tile windows, but its fairly trivial to create such
functionality:

- 38 -

#!/bin/rc
tile - tile windows
usage: tile

gather some information
screensize=(0 0 ‘{echo $vgasize | awk -Fx ’{print $1, $2}’})
windows=‘{for (win in /mnt/wsys/wsys/*)

if(dd -if $win/wctl -bs 128 -count 1 -quiet 1|grep -s visible)
echo ‘{basename $win}

}
fn left{ awk ’{printf("%s %s %d %d %d %d",$1,$2, 0, 0,$5/2,$6)}’}
fn right{awk ’{printf("%s %s %d %d %d %d",$1,$2,$5/2,’$b’,$5, ’$e’)}’}

auto tile windows
if(~ $#windows 1)

echo resize -r $screensize > /mnt/wsys/wsys/$windows/wctl
if not {

echo current > /mnt/wsys/wsys/$windows(1)^/wctl
echo resize -r $screensize | left > /mnt/wsys/wsys/$windows(1)^/wctl
windows=‘{echo $windows | sed ’s/^[^]+ //’} # shift
step=‘{ echo $screensize(4) / $#windows | bc }
b=0; e=$step # begin, end length
for(i in $windows){

echo current > /mnt/wsys/wsys/$i/wctl
echo resize -r $screensize | right > /mnt/wsys/wsys/$i/wctl
b=‘{ echo $b + $step | bc }
e=‘{ echo $e + $step | bc }

}
}

The tile , script just does a bunch ofawk arithmetic to figure out the coordinates for the left half of the
screen, which it gives to the first window, and then it carves the right half of the screen up into however
many chunks are needed for the remaining windows. One complication to beware of is that the window in
question must be made the currently active one before it is resized, sincerio will not allow you to resize
an inactive window. You can write all kinds of window manager extensions to suit your needs, on my Plan
9 box for instance, I have a 20 line shell script that provides virtual workspaces.

Harvey includes a variant ofrio called jay , which has a simple panel and window buttons. It
doesn’t really add anything except a thin layer of recognizability for newbies. As for Plan9Port it does
include a window manager calledrio which tries hard to look like the Plan 9 equivalent. But because of
limitations in UNIX, it does not present its control interface as files, neither can it run nested sessions inside
itself, nor does it morph new programs into the same window. So in reality it is little more then a fake
look-a-like, and frankly there are far much better alternatives, such as the Plan 9 inspiredwmii or dwm
tiling window managers.

Finally, the Inferno desktop is somewhat of a hybrid between the Plan 9 ideas and traditional GUI
systems. acme is included, pretty much everything is presented as files and the shell in very similar to
that of Plan 9. Like rio , wmcan also run as a window inside itself. But desktop applications use a clone
of Tk, which carries much more of the GUI burden, and gives a recognizable feel. Applications are
launched from a startup menu, and GUI programs run in a terminal will popup as new windows.wmdoes
present plain text control files likerio , but working with them requires that you learn a bit of Limbo and
Tk programming first. This is both good and bad, on the one hand creating traditional looking desktop
applications is much easier in Inferno, since you don’t need to invent a toolkit first. And if you have
experience with Tk, you will be making graphical apps in no time. On the other hand, like traditional
desktops, the implementation is inflexible. It is not possible to extend the window manager with simple
shell scripts like we did for Plan 9 for instance.

The window manager is actuallywm/wm(which also startswm/toolbar). The top level wm
directory holds about 50 other desktop utilities, including a few simple games. The total amount of source
code lines for all of these are 41,000 lines, and their manpages total 56 pages. The GUI depends on the

- 39 -

code in /libdraw , /libprefab and /libtk , which totals 30,000 lines of code, and cover the 9th

Inferno Desktop

section of the manual, which spans 120 pages.

Comparing the source code here to UNIX counterparts is almost laughable. For instance, the default
X window managertwm, is 30 times larger then the Inferno desktop, even though it is much more frugal.
As for the X Window System it is 140 times larger then all the GUI applications and support libraries in
Inferno combined.

Plan 9 as a Daily Driver?

But one may ask; sure Plan 9 and Inferno are interesting and novel, but are they actuallyuseful?
Would any sane person really use them as a daily driver? No.* To quote from section 0.1.3 - ‘‘Plan 9 is
not for you’’, in the 9front FQA:

Let’s be perfectly honest. Many features that today’s ‘‘computer experts’’ consider to be
essential to computing (JavaScript, CSS, HTML5, etc.) either did not exist when Plan 9 was
abandoned, or were purposely left out of the operating system. You might find this to be an
unacceptable obstacle to adopting Plan 9 into your daily workflow. If you cannot imagine a
use for a computer that does not involve a web browser, Plan 9 may not be for you.

Rob Pike described Plan 9 as ‘‘an argument.’’ And in many ways, that’s what it is. It demonstrates
that it is possible to design a modern operating system, with graphics, networks and multiprocessing, while
still holding on to the UNIX design principals. It provides a truly marvelous and unique experience that is
fun to play with, and it gives a hint at what computing could have been like. But it really is a systemfrom
outer space,and is not at all suited for this world. So much the worse for humanity.

PS: If you cannot be persuaded from using Plan 9 as a day to day desktop, go with 9front. Not only
is it actively developed, but it includes many features that you will likely need (and expect), such as video
playback and wireless networking. In contrast to classic Plan 9, it is nearly useful.

*) Then again, sanity is overrated.

- 40 -

3.7. Programming

The Plan 9 C compiler collection in/sys/src/cmd/cc includes 11,000 lines of code, and
section 2 of the manual, covering the system library, spans 390 pages. There isn’t a single C compiler in
Plan 9, instead each supported architecture has its own. This makes cross-compilation very easy, just use
the 6c compiler to compile amd64 binaries on an i386 system, instead of the i386 compiler8c . To
compile and install an entire 64-bit Plan 9 system on a 32-bit system, just runcd /sys/src ;
objtype=amd64 mk install (this only takes a few minutes).

Plan 9 uses its own C dialect, which is discussed in/sys/doc/comp.ps , see also Francisco J
Ballesteros bookIntroduction to OS Abstractions Using Plan 9 From Bell Labs.The biggest difference
between this dialect and ANSI C, is that Plan 9 doesn’t have insane headers, preprocessors orifdef ’s.
exits return a string instead of an int, and system libraries actually provide decent string, unicode and
multiprocessing support. Of course since everything is a file in Plan 9, C programs are significantly
cleaner. There are no sockets, links or ioctls to grapple with. All the source code for Plan 9 is included in
the installation, and thesrc command will automatically open a programs source code in your editor.
Use this command for what it’s worth, it is a gateway to profound beauty and wisdom!

A meager POSIX compatibility layer is also provided withape , such as an ANSI C compiler in
ape/cc . But don’t get your hopes up, most UNIX software will not compile in Plan 9. See
/sys/doc/ape.ps for more information. Perl, Python and Go have also been ported to Plan 9.

Inferno uses the Limbo programming language exclusively. The sources in/limbo count 24,000
lines of code, and section 2 of the manual, covering the system library (you don’t use syscalls in Inferno
instead you use Limbo modules), spans 400 pages. Sadly some of the documentation for Limbo is
outdated, but a good starting point can nevertheless be found in/doc/descent/descent.pdf . See
also the bookInferno Programming with Limbo, which can be freely obtained from the internet. If you like
Go, then you will love Limbo! It’s similar in its design principals, but simpler with saner syntax.

- 41 -

Go is really a reimplementation and expansion of Limbo for UNIX, in comparison it is 80 times big-
ger. And there is some movement in the Harvey and Plan9Port projects to rewrite these in Go. As for C,
the compiler collection from GNU is 800 times bigger compared to that of Plan 9.

3.8. Kernel

The kernel source for Plan 9 is in/sys/src/9 , (9legacy and Harvey also include a 64-bit fork of
this in /sys/src/9k , which holds about 80,000 lines worth of code), and contains about 250,000 lines
of code. Section 9 of the manual, discussing kernel features, cover 23 pages. The Inferno kernel is in/os
, it contains about 200,000 lines worth of code, and the 10th section of the manual, which spans 120 pages,
discusses both the hosted and native aspects of the operating system. The code can be divided into these
five categories:

9front 9legacy Harvey 9ferno
name src src src src comment
boot 24 11,782 12,326 13,978 startup procedures
ip 16,150 14,764 15,087 16,235 network
port 50,642 43,781 44,700 47,034 portable (main) kernel facilities
pc 94,291 103,797 105,875 72,468 x86 (32/64) drivers
bcm 12,706 19,272 19,572 n/a arm (32/64) drivers
other 55,128 85,509 88,590 55,178 other drivers and things
sum 228,941 278,905 286,150 204,893 in total

As you can see, apart from a different startup procedure in 9front, the overall complexity of these
Plan 9 variants, and even 9ferno, are fairly equal. This similarity is deceptive however, as there are signifi-
cant technical differences between 9front and 9legacy, let alone Plan 9 and Inferno. Harvey though is very
much in sync with 9legacy, whereas its sister project, JehanneOS follows 9front more closely.

Cross platforming was a major goal for the developers, and both the Plan 9 and Inferno kernels sup-
port a wide array of architectures. Of course many of these are obsolete now, for example, both of these
systems can be compiled on Irix, but amd64 (aka. ‘‘64-bit’’) support has only appeared recently. For a
more in depth look at the Plan 9 kernel see Francisco J Ballesteros bookNotes on the Plan 9 3rd Edition
Kernel. The Plan 9 and Inferno kernels are about a hundred times smaller then the Linux kernel, about the
same size as Minoca or Minix, and about twice the size of ancient UNIX kernels like 4.3BSD.

Capabilities

With the small kernel size mentioned above, it is worth pausing a bit and reflecting on what these
kernels can actually do. First of all, the filesystem in Plan 9/Inferno runs on a network protocol (9P).
Whether the file in question is actually on the local computer, or somewhere on the web, is irrelevant. Nat-
urally a solid security framework is built deep into the system to ensure that all such transactions are safe,
again whether or not such transactions happen locally or via the internet, is irrelevant, they are secured
regardless (Plan 9 does not haveroot or setuid problems, neither does it implicitly trust foreign
kernels, like UNIX does). What this means, is that Plan 9/Inferno is network and securityagnostic. Any
program running on these systems gets these things for free.

In addition, each process in Plan 9/Inferno has its own private view of the filesystem, or ‘‘names-
pace.’’ So in effect, all processes run inside their own mini-jails. It is easy to control just how much, or
how little, access each process should have to the system. But this technique was not devised primarily to
isolate resources, but todistribute them. For example, if you want to run a Mips binary on a PC, just
import the CPU from a Mips machine. If you want to debug a system that crashes during startup, just
import its /proc on a working machine, and run the debugger from there, etc. Since all resources are
files, and all processes have their own private view of files, and networks and security are transparent, you
can freely mix and mash any resources on the net as you see fit. In fact, Plan 9 wasdesignedto run as a
single operating system, spread out across multiple physical machines on a network. No other operating
system, that I am aware of, is even close to providing such capabilities. In recent years modern UNIX
systems have begun incorporating unicode, jails and snapshots, technologies that Plan 9 had invented in the
early 90’s, but their implementations have been clunky, clumsy and laborious to learn in comparison.

- 42 -

4. MINOCA, SerenityOS and HAIKU

- 43 -

In this chapter we will take a closer look at what is often referred to as ‘‘alternative operating sys-
tems’’, that is systems other then Linux, BSD or UNIX".* There are great many to choose from; ReactOS,
FreeDOS, IcarOS and ArcaOS are popular reimplementations/continuations of the proprietary operating
systems Microsoft Windows, MS-DOS, Amiga OS and OS/2. However nostalgic, these systems have noth-
ing in common with UNIX, and are therefore too dissimilar to warrant further analysis. SkyOS and Sylla-
ble are opensource and UNIX-like desktop systems that do fit well with our theme, but they have been dead
now for so long that I felt it best to leave them be. The history buff in me would have loved to study Mul-
tics and OpenGenera, but they too, aside from a purely historical connection, have nothing in common with
UNIX. And there are a plethora of smaller educational, special purpose or just plain weird operating sys-
tems, such as Oberon, Visopsys, MikeOS, FreeRTOS, KolibriOS, MenuetOS, DexOS, TempleOS, and so
on and so forth. I find these systems very interesting, but again, they are too dissimilar to UNIX to fit
nicely within our discussion. So, in the end I have opted to analyze just three, out of the great many alter-
native operating systems out there; Minoca, SerenityOS and Haiku. These are all fairly mature and practi-
cal, opensource and UNIX-like, and are thus a natural fit.

Minoca and SerenityOS are very new projects, the former is the brain child of two young developers
who formerly worked at Microsoft. Their motivation for writing an operating system from scratch was the
realization that all other major OS’s are several decades old, and consequently weren’t very well designed
for modern hardware and use cases, specifically by not being sufficiently modular. In this sense, it bears
some resemblance to MINIX, in terms of goals at least. They designed a very small and elegant UNIX-like
operating system within just five years. Minoca is targeted for embedded systems, and thus have a much
smaller goal then most of the other projects discussed in this paper. Nevertheless, it is a feature rich and
POSIX compatible command line environment, well suited for embedded applications or OS studies.

SerenityOS and Haiku are more general purpose however, and ostensibly, they have many similari-
ties; They are both developed by former Apple employees, they are both UNIX-like retro-looking desktop
systems, and they are both snappy and practical. But there are significant differences too. For one Sereni-
tyOS is newer and smaller, and lacks both maturity and features in comparison to Haiku. In fact, it has yet
to be released as an installable ISO. Typically, its users build it straight from source from a more main-
stream OS, say Linux, and run it inside a virtual machine. Yet, the young project has many fascinating
tricks up its sleeve; From JSON kernel internals and a lite Rust-like programming language called Jakt, to
monthly developer updates on Youtube and community support on Discord. Despite the retro aesthetic,
SerenityOS feels very much like a modern re-take on UNIX.

Haiku is a much older project, its roots goes back to the early 90’s, when a former French Apple
developer started his own rival company called Be Inc. Their multimedia oriented operating system, called
BeOS, used aggressive multi-threading and a clean design without backwards compatibility cruft, to pro-
duce a blazingly fast desktop. While a good POSIX compatibility layer allowed the system to easily import
UNIX applications. Despite having a good product that was seriously considered as a base for Mac OS X,
the company failed and was eventually sold to Palm Inc in 2001. Before its demise many of the BeOS key
technologies were released as opensource, but it took many years before the open Haiku fork reached a
usable level. The first alpha came in 2009, the first beta in 2018. Yet, despite being still in beta, the retro-
looking OS is insanely fast and surprisingly feature rich. With a 3rd party package repository that isn’t all
that shabby compared to more mainstream competitors.

*) Of course Plan 9 and Inferno discussed in the previous chapter would definitely fall into the category of "alternative
operating systems", but I felt they were interesting enough to deserve a chapter of their own
) To be clear; From a surface level, Multics is indeed reminiscent of UNIX Version 1, but already by Version 4, the two
had diverged beyond recognition. So, appart from historic fascination, a comparison of the two will be irrelevant here.

- 44 -

4.1. Text Editors

SerenityOS Haiku
name src name src
TextEditor 971 StyledEdit 3142

Pe 56,810

Minoca ships withnano , and includesvim and Emacs in its package repository.

SerenityOS has a few UNIX command line editors in its Ports collection, namelyed , vim , and
nano . But there is only one text editor by default, the appropriately named TextEditor. Superficially, it
looks like Notepad with syntax highlighting for a handful of programming languages. But in true Serenity
fashion, it has some surprising tricks up its sleeve, such as rendering Markdown and HTML source files in
real time!

With that in mind, the above statistic is quite absurd. Programs in SerenityOS do indeed have a
shockingly low source code line count, and there are several reasons why, beyond good programming that
is; For one, software in SerenityOS is very new, lacking in essential features and fixes. We should expect
these numbers to swell quite a bit before the system reaches a mature level. Perhaps more importantly, pro-
grams have dependencies. 971 lines of C++ is not enough to get such a graphical intensive text editor up
and running. The five source files making up TextEditor include 57 library files, which in turn include 284
library files, which in turn include even more library files, which in turn include more or less the entire OS.
Of course, this also holds true for any other program. A simple text editor in Linux may depend upon
GTK, which depends upon X11, which depends upon the Linux Kernel, which depends upon GCC, and so
on... It is easy to count lines of code in a directory, but working out what the code actually does, and what
it depends upon is another matter entirely. This general warning aside though, SerenityOS do tend to use
libraries much more aggressively then most. This is by design of course, and it is very impressive that the
default libraries allow you to write such a functional GUI program in less then a 1000 lines of code!

- 45 -

In addition to nano , Haiku has two graphical editors, the Notepad like StyledEdit and the slightly
more advanced Pe (Programming Editor). Pe is more or less a simplified Gedit, with syntax highlighting
support for a few dozen programming languages. It is quite nice for such a small project, and the
HaikuDepot package manager also hasvim , Emacs and Kate.

4.2. Internet

SerenityOS Haiku
name src name src
Browser 3250 WebPositive 10,205
Mail 750 Mail 13,502

The situation in Minoca is quite frugal. It includeswget by default, and you can installcurl and
ssh but there are no web browsers or mail clients in its repository. Of course youdo have a C compiler in
the repo, so if you want a web browser, go make one!

SerenityOS has its own web browser, and as with everything else in this operating system, it is writ-
ten from the ground up, with no 3rd party components. With that fact in mind, it can render an impressive
amount of web sites out there, including not so shabby JavaScript support, but it obviously falls short in
comparison to mainstream alternatives. The Mail client is minuscule, and will almost certainly crash if you
try to use it with a real Email account. The Ports collection includes some classic UNIX web tools, such as
wget , curl and openssh . SerenityOS also ships with its own Web server.

For a small OS Haiku’s native web browser is surprisingly good, but don’t let the low source code
count deceive you, most of the work is being done by the multi-million line WebKit backend. But even
this huge backend isn’t nearly big enough to compete with Firefox or Chrome, which translates into the fact
that many webpages and services simply won’t work.wget and curl are included as well, and happily
lynx and a few other browsers, that do a far worse job then WebPositive, can be installed through the
package manager. It also has a Mail client and a web, FTP and SSH server.

- 46 -

4.3. Office

You can install groff . in Minoca. What more do you need?

SerenityOS does not include any of the common productivity or office applications that a Linux user
might expect, instead it relies heavily upon Markdown for all its documentation needs. All the manpages,
and all the other documentation is written in plain old Markdown. For a new operating system this makes a
lot of sense! Everything is HTML these days, so just stick to that. Why on Earth would you go to great
length recreating the 50 year old troff, or the 7 million lined LaTex? Of course HTML is terrible, but writ-
ing it in Markdown will take away a lot of the pain at least, and it is relatively easy to convert simple Mark-
down to troff, LaTex, DocBook, or any other format you may need. As mentioned, Serenitys TextEditor
also renders Markdown and HTML in real time, making it a very productive office tool if you constrain
your documents to those formats. You will also find a PDF reader, that actually renders some PDF docu-
ments without crashing, on occasion, and a fairly powerful Spreadsheet application using a custom
JavaScript dialect.

Haiku ships with groff (GNU troff) and a PDF reader by default, but that’s not all. The repository
includes LibreOffice, Calligra and Scribus, and these killerapps works like a charm! There is DocBook and
LaTeX as well, in fact you will find a great many of the popular opensource offerings available for Haiku.

4.4. Shell

Minoca SerenityOS
name src name src
sh 17,933 Shell 12,756
chalk 26,749

Minoca includes its own Bourne compatible shell, and a unique scripting language calledchalk
(naturally it’s undocumented - butapps/ck/README.md in the Minoca source tree will give you some
pointers at least), while Haiku usesbash as its default shell. Both operating systems include several other
alternatives in their package repositories, Haiku even includes the Plan 9 inspiredes shell!

- 47 -

SerenityOS has its own shell, which looks very much like a UNIX shell, but with some differences.
Like the Plan 9 shell, lists and arrays are seamless, you can do pairwise concatenations (or "Juxtaposi-
tions"), ReadWrite redirections, functions with explicit arguments, and more! In short, the Serenity Shell,
behaves like a UNIX shellshouldhave done. The Ports collection also contain some bona fide UNIX
shells if you need them, such asbash , dash , oksh (OpenBSD Korn Shell) andzsh .

Example of SerenityOS Shell Syntax(see page 34 for comparison)

echo $a(string) for w in $a { loop {
rm $(glob {mp3,ogg}) echo -n "$w " {subproc}&
alias user=whoami } }
end(first){ if [${length $a} = 0] {

echo $first exit 1 match $1 {
shift && echo $* } else { Abe|Bob { echo Hi }

} v=${remove_suffix ! $a[1]} Carl { echo Hey }
echo bye $v * { kill -KILL $$ }

a=(hi guy!) } }
expr ${length $a} + 1 echo $?

4.5. Applications

Minoca SerenityOS Haiku
name src name src name src name src
echo 130 echo 111 PDFViewer 850 BePDF 124,868
cat 377 cat 52 Spreadsheet 5317 MediaPlayer 22,087
ls 1606 ls 472 Calendar 319 ShowImage 6617
find 1509 find 493 SoundPlayer 1397 Sudoku 2760
cp 200 cp 80 ImageViewer 547
wc 309 wc 97 Hearts 1358
sed 3393 Chess 963

tar 219 Minesweeper 783
sort 1141 sort 34
tail 289 tail 68
ps 1769 ps 162

file 152
grep 954 grep 264
date 283 date 57

less 502

Minoca is almost exclusively devoted to the shell, their collection of standard utilities is distributed
in a single binary calledswiss . The approach is similar to BusyBox in Linux, but the source code is
three times smaller. The entire suit contains some 80 utilities, and have a source code count of 67,600
lines. GNU tools that don’t have an equivalent in this collection, such asawk, tar , file and less can
be installed through the package manager (but there’s nobc or other calculator which is a curious
oversight).

SerenityOS also develops its own UNIX-like command line tools, it sports some 180 utilities, which
have a baffling low combined source code count of 22,800 lines. And again, GNU tools that don’t have a
native alternative, such asawk, sed and bc can be installed from Ports.

Technically, Haiku has about 150 native shell utilities, with a combined source code of 105,000 lines.
None of these tools follow in any way UNIX design principals however, and they are about as useful as the
Windows CMD utilities. But Haiku also imports the GNU coreutils and other basic UNIX tools, which
gives it a rich and familiar command line environment. This power is somewhat of a happy accident, as the
developers seems totally distracted by the desktop, and just slapped on a large pile of GNU, because they
couldn’t be bothered to do it themselves.

- 48 -

4.6. Desktop

Both Haiku and SerenityOS are very GUI oriented operating systems, so much so that it’s actually
very difficult to find anything specific about their desktops, since bits and pieces of them are sprinkled
throughout their respective source codes. In this respect these operating systems are somewhat reminiscent
of Windows, where there is no clear distinction between the core system and the graphical desktop. Unlike
Windows however both Haiku and SerenityOS are lean mean super machines, by the time Ubuntu shuffles
into the office, they have been up for hours and are feverishly sipping their fourth cup of coffee.

At first impression, the Haiku desktop may seem quite spartan and novel. You’ll appreciate the
responsiveness early on though, and with usage, you’ll also notice that there is much careful though behind
this deceptively simple GUI. Some examples: The window title only goes part way across the top of a win-
dow border. This is not some failed attempt at fancy aesthetics, as one might first suspect, it has a purpose;
Hold down the Windows button as you drag one window title onto another, and the two windows will be
tabbed together. Another example: Some applications, like Workspaces, DeskCalc, have a tiny yellow
arrow at the bottom right corner of the window. Hold down the Windows button and click and drag this
arrow to place a clone of this application as an applet on the desktop. Both examples illustrate good GUI
design: Don’t add tabs to individual applications, and create some applet which duplicates already existing
functionality; let the desktop take care of such interactivity, and all applications will benefit. A final exam-
ple: Left click the simple load bar on the start menu, navigate to "Threads and CPU usage", and you can
view how much CPU usage each segment of each program is using in real time! The multi-threaded nature
of Haiku is really very impressive, you could run many movies simultaneously without lag even back in the
90’s. Something even modern computer systems will struggle with today.

The Haiku desktop sports about 60 graphical utilities in total, which have a combined source code of
320,000 lines. For a fully fledged desktop these numbers are quite frugal, but the Haiku applications are
surprisingly feature rich. In fact just by their appearance alone you would have expected their source code
to be 10-20 times larger then they are. ShowImage and MediaPlayer can handle just about any image,
audio and video format, and as already mentioned a fairly decent PDF reader, web browser and program-
mer friendly text editor are also available. And there are some nifty little extras, such as Workspaces and

- 49 -

Sudoku. There aren’t nearly as many 3rd party applications for Haiku as there are for Linux or BSD, but
HaikuDepot still ships with thousands of additional packages available for download, including dozens of
games, and even bigwig applications, like Blender, Qt_Creator and Slack. The only painful omissions here
are Firefox and Chrome, but it is understandable that porting such huge behemoths would be difficult.

Haiku Desktop

By comparison, Serenity has a much more familiar GUI. On the surface level it seems like a Win-
dows 95 clone. But this system too is deceptive; Once you pop up the hood and take a look inside, you will
notice thateverythingis different! We have already seen some revealing statistics. The source code of
Serenity applications are so simple and elegant that it is breath taking! They are on par with Plan 9 or
Inferno, and that is saying a lot. The baffling thing, for me at least, is that Serenity embraces many
technologies that I personally view as evils when it comes to simplicity; JavaScript, C++, OOP, Windows
95, GUI, Youtube and Discord, are some keywords that comes to mind. Yet, they somehow manage to
produce a stunningly slim but powerful operating system. I find this as surprising as it is delightful, and it
suggest a view contrary to my own: Perhaps designing a simple OS is not so much about what abstract
philosophy you follow, but simply the act of rewriting it from scratch under the wise management of a
small development team. What has probably contributed most to Serenitys simplicity, is its strict rule of
only shipping in-house code. There are also other examples that support this view: Inferno and KolibriOS
also provide GUI-rich desktops with very simple code. These three operating systems have very different
internals, and very different design philosophies, but they are all written from scratch by a small team of
developers.

The Serenity desktop includes over 90 graphical utilities, with a combined source code of 80,000
lines. In terms of applications this desktop is surprisingly rich, including 10 games, and most of the usual
suspects, such as a web browser, email client, audio player, calendar, PDF and image viewer, and some
fairly good development applications. Having that said, SerenityOS is Alpha software, and you will
quickly notice that these desktop applications are both frugal and crashy. As mentioned, Serenity has
strong aversion about importing 3rd party code. But it does have a set of 3rd party Ports that you can
optionally install. It is somewhat fiddly to work with, as you have to compile the ports on the host system,
not natively, at the collection only contains some 250 entries. Nevertheless, you will find some important
UNIX tools there, and a handful of fun games.

- 50 -

Don’t be too quick to dismiss alternative operating systems just because they are obscure. As a rule,
the really innovative ideas come from small systems. SerenityOS is hands down one of the most pleasant
development environments I have ever seen, and Haiku can serve well as a smooth and functional retro
desktop. Like Windows however, neither of them can run without a GUI, limiting their usefulness in the
server or embedded market. In this capacity Minoca really shines. Although you can run X in it (eg.
opkg update; opkg install xinit; startx), there is little point in doing so, since about the
only thing you can do with it is run a bunch ofxterm ’s. But the system is useful as a development
platform for small applications, and the tiny system serves very well as an educational tool for learning how
operating systems work.

Serenity Desktop and Minoca

- 51 -

4.7. Programming

Minoca does not include any programming utilities by default, except for shell scripting, but many of
the usual suspects can be installed with its package manager, such asgcc , perl , python and nasm.
(eg. opkg update; opkg install gcc)

SerenityOS supports shell and JavaScripting out of the box, in addition to C++ programming. Work
is also under way to replace the C++ code base with Jakt, a custom built programming language that bears
some resemblance to Rust. Brian Cantrill, of Solaris fame, has suggested that operating systems should be
rewritten in Rust. SerenityOS might just become one of the first desktop oriented OS written in a Rust-like
language.* Naturally, you can also find many other classic programming tools in the Ports collection, such
as, gcc , llvm , lua , nasm, php , python , ruby , and tcl .

As for Haiku, it ships with most common programming utilities out of the box, and it contains quite a
few extras in its repository besides, includingtcl , ruby , lua , nodejs , rust , erlang and
rudimentary support for Haskell, Lisp and Java. Whatever your personal choice of poison may be, Haiku
should have you covered.

It could also be added here that unlike all the other operating systems analyzed (except for Inferno),
SerenityOS and Haiku aren’t predominantly written in C. Half the systems source code in Haiku (espe-
cially the GUI aspects of it), and all of the source code in SerenityOS, is written in C++. In this respect too
they bear a resemblance to Windows, but unlike the Microsoft Leviathan, they are actually nice and sane
environment to program in, especially SerenityOS. The entire section 2 and 3, covering system calls and
libraries in the SerenityOS manuals only cover about 60 pages (though incomplete documentation con-
tributes mightily to the simplicity). Both Haiku and SerenityOS provide desktops with surprising speed
and elegance, the fact that the GUI aesthetics lag some 30 years behind the times, may have something to
do with the outstanding performance.

*) See also https://redox-os.org for another example

- 52 -

4.8. Kernel

Minoca SerenityOS Haiku
boot 16,173 351 43,758
kernel 104,363 74,150 100,010
drivers 151,604 4017 43,706
total 272,140 78,518 187,474

The actual Kernel core of these operating systems are fairly equal in size, and roughly comparable to
OpenBSD in this respect, but more complex then the Plan 9 or Minix kernels. The main difference in over-
all size boils down to device drivers; whereas Minoca has some drivers, Haiku has few, and SerenityOS
none. Nevertheless, we are comparing apples and oranges here. Minoca is a tiny gem that fits snugly in
your pocket, intended for embedded use. SerenityOS is a much more GUI intensive affair. In theory it is
intended as a daily driver, but for now it is very much a system by developers for developers. Whereas
Haiku is an older and considerably more robust project, providing quite a fair competitor to more main-
stream alternatives.

Conclusions

As mentioned there are many alternative operating systems out there, but the three we have looked at
here illustrate nicely common strengths and weaknesses. Haiku is the most ambitious of the three, and with
30 years of history, including solid corporate backing in the past, it is mature enough to provide a rich set of
applications and documentation. The innovative and responsive desktop augments these features, and can
provide a real unique and refreshing experience for a hobbyist user. Yet good driver support is just too
much for the developers to handle. And this isn’t the worst of it, even if a new user against all odds man-
ages to run Haiku on his laptop, he will likely just shrug and think,I have no use for a system without a web
browser.

For SerenityOS the situation is even worse. Although it’s understandable that the project doesn’t
provide install ISO’s or device drivers at this early stages of development, it is worrying that the project
isn’t self hosting yet. The longer the developers postpone taking the step into real world, the harder it will
be to transition away from the developer-only environment. And the fact that is relies on a 3rd party 3rd
party packaging system, may hint of a perpetual beta-state project. Of course, that may not be a big prob-
lem for the developers. SerenityOS has provided, and will likely continue to provide, a fun and engaging
programming environment like none other!

In contrast to Haiku and SerenityOS, Minoca has a much more narrowly focused goal. Targeting the
embedded market means that the developers can safely ignore the vast amount of work needed to provide a
desktop on commodity hardware. And it is because of that narrow focus that they managed to write a sys-
tem from scratch within a few years. Yet programming alone does not make a useful product, Minoca has
virtually no documentation, and without it, it is doubtful that it will see any serious usage.*

Alternative operating systems are valuable because truly innovative ideas is only feasible to experi-
ment with on small systems. Unfortunately, modern expectations make such work difficult. Many users
will simply demand that Linux must be 100% compatible with Microsoft Windows, and that any alternative
operating system, no matter what the developers goals are, must be able to support their online shopping
habits. Even when developers try to meet such unreasonable demands, their creative and tireless efforts are
usually met with indifference and ridicule. Rob Pike estimated that 90-95% of the work in Plan 9 was
implementing external standards, and Theo De Raadt has estimated that two thirds of the development
effort in OpenBSD are on drivers alone. With that amount of work needed just to get a system booting, it’s
a small wonder that most who dabble with OS research are quite content with making the next Hanna Mon-
tana Linux distro. Whereas Bell Labs were rewarded several Nobel prizes for their work on UNIX, virtu-
ally no one has heard of Minoca, even though it is significantly larger then UNIX was in the beginning.
The UNIX revolution in the early 70’s didn’t just happen because the system was so good, but also because
expectations were so low.

*) Update, there has been no development in Minoca the last five years, so the project seems dormant.

- 53 -

5. BSD and MINIX

Even before the University of Berkeley discontinued its BSD project in the early 90’s, two open-
source forks sprang up to continued its development, NetBSD was a community of hardcore experts who
continued the work of porting BSD to many platforms. FreeBSD focused on the popular 386 PC, and tried
to make the operating system more user-friendly. It has since grown to be the most popular BSD variant
and is extensively used on servers, no doubt because it is so ‘‘user-friendly’’. NetBSD is still around, and
porting itself to architectures nobody has ever heard of, but has otherwise fallen into obscurity.

In 1995 OpenBSD forked from NetBSD due to some tiff among the developers. Unlike the other
BSD’s which are governed by democratic committees, OpenBSD enjoys the tyrannic rule of its lead devel-
oper Theo De Raadt. Its developers have an incredible, if not fanatic, focus on simplicity and security.
Whether or not this is the ‘‘right’’ thing to do is a good topic for a flame war. But lets just be diplomatic
and say that OpenBSD is the only BSD variant that the developers themselves would actually run on their
own laptops, and not just in a terminal window on their MacBooks.

Lastly DragonFly BSD and Minix are research operating systems. DragonFly is a fork of FreeBSD
with the goal of creating a distributed system, where you can install a single instance onto multiple physical
machines (in this respect it is somewhat reminiscent of Plan 9). It hasn’t reached that goal yet, but at least
it has developed a nifty ZFS like filesystem, called HAMMER. Minix is a highly reliable self-repairing
micro-kernel operating system, created by Andrew S. Tanenbaum. The kernel itself is a rewrite of UNIX
V7 and has no direct connection to BSD (Linux started as a fork of Minix by the way, which according to
Tanenbaum, took the wrong turn). But in later years the Minix developers have been working on importing
the NetBSD userland and ports, which makes the practical system look and behave very much like this fla-
vor of BSD.*

*) Update, there has been no development in Minix the last five years, so the project seems dormant.

- 54 -

Statistics for individual utilities are practically identical between DragonFly BSD and FreeBSD, and
between Minix and NetBSD, therefore I have not included statistics for these two research operating sys-
tems in most of the following sections.

5.1. Text Editors

OpenBSD NetBSD FreeBSD
name src man src man src man
ed 2613 8 3071 9.5 2971 9.5
vi 25,023 24 52,365 21 31,694 24
mg 15,184 18
ee 8644 8.5

vi here is of course the BSD variantnvi . mg is a simplistic reimplementation of Emacs, previously
known as MicroGnuEmacs, that the OpenBSD developers have picked up from the gutter and nursed back
to health. The FreeBSD editoree (easy editor) is reminiscent ofnano . No graphical editor is provided
by default, but there is a plethora of choices in the Ports Collection.

The striking difference between the BSD’s and Linux here, is that the BSD variants give you simple
editors by default. vim is 30 times bigger thennvi , but for a casual programmer it doesn’t really give
you much more then syntax highlighting. You would think that this wasn’t such a big deal, but what can I
say, it’s hard to see monochrome text when you’re used to colors, just as it’s hard to read a book without
pictures if you’re not used to it. Or to quote Rob Pike again:Pretty printers mechanically produce pretty
output that accentuates irrelevant detail in the program, which isassensibleasputting all the prepositions
in English textin bold font. ee is 20 times smaller thennano , while mg is 100 times smaller then
Emacs! A major reason for this small size is thatmgaims to be atext editorand doesn’t include features
like tetris or a psychotherapist. A good test for editor elegance is to read and edit its own source code, the
BSD editors passes this test with flying colors!*

*) Well, not literally.

- 55 -

5.2. Office

OpenBSD
name src
mandoc 33,716

mandoc is an OpenBSD fork oftroff , all the other BSD variants, as well as Illumos, use this as
their standardman implementation. In overall complexity it is quite similar to the originaltroff , but
the focus is different. mandoc doesn’t support general purpose article macros, such asms and me, and
obscure preprocessors such aspic have been dropped. Instead the suite is exclusively devoted to
producing technical manuals. It supports the oldman macros, but the newermdoc format, which gives
much more fine-grained semantic control, is preferred.

For personal correspondence of course, you would need a different tool, and there are many to choose
from in the Ports Collection. For example, if you have installed thetexlive package, you can write a
letter in LaTeX:

\documentclass{article}
\begin{document}
\subsection*{Hello grandpa!}
Hi, how are you my bearded progenitor?
Is the mainframe giving you trouble these days?
I just received the floppy disk you sent me,
looking forward to reading it,
once I have managed to locate my discarded disk drive :)

Sent to you by my BSD box
\end{document}

You can then compile this source to PDF by executing the commandslatex letter; dvipdf
letter.dvi . Alternatively youcouldwrite your correspondence in DocBook if you really had to. After
installing the dockbook and docbook-xsl package you can write your DocBook letter (note that
some of the details here will vary from system to system):

<!DOCTYPE article PUBLIC "-//OASIS/DTD DocBook XML V4.5//EN" \
"/usr/local/share/xml/docbook/4.5/docbookx.dtd">

<article>
<section>

<title>Hello uncle!</title>
<para>
How’s business my dear rich uncle in America?
Is the stock market treating you OK these days?
Thanks for the sneakers you sent me,
I’m using them every day :)
</para>
<para>
Sent to you by my BSD box
</para>

</section>
</article>

You can then compile this to HTML for instance with the following commands:

$ STYLEST=/usr/local/share/xsl/docbook/html/docbook.xsl
$ xsltproc -o letter.html $STYLEST letter.xml

Of course you can do all this in a comfy graphical office suite, such as LibreOffice. All of the BSD’s
have a large enough collection of ports to replicate virtually any Linux office environment, all of the office
tools mentioned in the upcoming Linux section for instance are available for all the BSD’s.

- 56 -

5.3. Shell

OpenBSD NetBSD FreeBSD
name src man name src man name
sh 15,531 39 13,330 31
ksh 19,535 54 22,661 48
csh 13,310 27 14,253 27
tcsh 57,327 83

OpenBSD and NetBSD use variants of the public domainksh and csh , also known aspdksh
and pdcsh . NetBSD’s sh , the Almquist shell, also known asash , is the basis fordash in Linux.
The C shell was developed by the BSD community before the Bourne shell was introduced in UNIX V7 in
1979. It championed command history, jobs and other interactive features that we now take for granted.
Unlike the Bourne shell however, its main development focus wasn’t on providing a programmable shell,
and suffers in comparison as a basis for shell scripting. The new and improvedcsh , called tcsh , is used
by FreeBSD and DragonFly, and it’s arguably on these platforms alone that the C shell is still in active use.

In practical usageksh is very similar to bash , but shell scripts may not be fully compatible, in
particular array handling is different. There is a good Perl script for checking shell scripts forbash
idiosyncrasies, and suggesting more portable syntax, calledcheckbashisms . A quick Google search
should located it quickly enough. The Public Domainksh is about 20 times smaller and its manual half
the size of bash . Ksh93 on the other hand is nearly 10 timer bigger thenpdksh .

- 57 -

5.4. Applications

OpenBSD NetBSD FreeBSD
name src man name src man name src man
echo 27 1 echo 43 0.5 echo 122 1
cat 199 1.5 cat 268 1.5 cat 332 2
ls 1006 5 ls 1269 5 ls 2620 9
find 1862 7 find 2164 7 find 2896 11
cp 570 2.5 cp 681 2.5 cp 797 3
wc 215 1.5 wc 259 1.5 wc 276 2
sed 2409 6.5 sed 2567 6.5 sed 3082 7
awk 5489 7 awk 7835 7.5 awk 5480 7
tar 7912 4.5 tar 9343 4.5 tar 7748 15
sort 4220 6 sort 1551 3.5 sort 4955 7
tail 838 1.5 tail 831 1.5 tail 1224 2
ps 1427 8.5 ps 2441 7.5 ps 2290 9
file 3280 1.5 file 47,959 8.5 file 48,537 9
grep 1361 3.5 grep 1627 7.5 grep 1708 8
date 204 2.5 date 437 2.5 date 1014 5
bc 1409 4.5 bc 5221 15 bc 1419 5
less 11,769 25 less 24,560 30 less 19,074 31

In total the /bin and /usr/bin directories in OpenBSD contain about 390 utilities, the source
code for these programs count 600,000 lines of code, and section 1 of the manual covers 5000 pages. For
NetBSD there are about 540 utilities in these directories, but only half are actually maintained by the
NetBSD developers, the rest are imported from external sources. Of the ones that NetBSD maintains, its
source code numbers 310,000 lines of code. Section 1 in the manual covers 4600 pages. (most of these
core utilities have been imported to Minix) FreeBSD has about 530 utilities, it maintains about two thirds

- 58 -

of these themselves. Those have a combined source code of 250,000 lines. Section 1 in the manual covers
2900 pages.

At this point we can begin to see some differences diverging between the BSD’s. Many of the
OpenBSD programs listed above are significantly simpler then their counterparts in NetBSD and FreeBSD.
echo and date are nearly five times bigger in FreeBSD,ls nearly three times as big. Of course most
of these utilities are still very small compared to Linux. FreeBSDgrep is 100 times smaller then the
GNU version, find , sed , awk, tar , ps and bc are other examples where the GNU versions are huge
by comparison. And yet the BSD utilities do basically the same job, in fact in my experience they are often
more robust then their Linux counterparts. In the case of OpenBSD especially a lot of utilities are included
which either don’t have an equivalent in Linux, or it replaces very poor alternatives. Some of these
applications, such asssh , tmux and nc have seen mass adoption. Programs in the table below that is
only available in OpenBSD are marked with an asterix.

More Applications

OpenBSD
name src man comment
bsdgames 75,053 - Old games (actually maintained in OpenBSD)
ssh 74,390 18 Remote shell, used by *everyone*
sftp 5,749 3.5 Secure FTP, part of the ssh suite
scp 1,364 7 Secure rcp, part of the ssh suite
got* 114,377 24 Game of Trees, alternative to git (tog alt. to tig)
tmux 43,149 54 Terminal multiplexer, alternative to GNU screen
opensmtpd* 37,914 1.5 Email server, alternative to sendmail etc.
httpd* 10,486 1 Web server, alternative to apache etc.
systat 7840 8 System statistics, alternative to htop
openrsync* 5547 3 Sync files over the net, alternative to rsync
aucat* 3355 3 Audio player/recorder/mixer, alternative to sox
cdio* 2727 3 CD player/ripper/burner, alternative to cdparanoia/cdrecorder
nc 1845 6.5 NetCat, a swiss-army tool for the web
doas* 884 1 Run commands as another user, alternative to sudo
units 589 2.5 Unit conversion
lam 221 1 ‘‘Laminate’’, ei. concatenate files side by side
fold 184 1 Fold lines, alternative to fmt
vis 175 1.5 Show invisible characters in input
rev 76 0.5 Reverse characters in input

Aggressive surgery is the only known treatment against the cancer of feature creep. Yet few develop-
ers outside of OpenBSD have the guts and discipline required to rescue their code. Of course with healthy
living you can often avoid the problem preemptively, and adhering to the UNIX principal of ‘‘worse is bet-
ter’’ will keep feature creep to a minimum. To illustrate, thefile utility is used to figure out what kind
of filetype a given file is. This is really a compromise, since the UNIX operating system itself doesn’t
know or care about filetypes. The utility scans the first couple of bytes of the file and makes an educated
guess. The process is slow and error prone, but here is an even bigger problem: There is no end to obscure
filetypes out there, and new ones are invented every year. The only sustainable and wise course of action is
to follow the principle ‘‘worse is better’’: Don’t even try to guess every filetype known to man 100%
correctly, just look for usual suspects and do a reasonably good job. OpenBSD follows this principal,
FreeBSD (and NetBSD) does not, none of these versions are fast, and none are able to guess filetypes 100%
correctly, but the OpenBSD command is at least 15 times smaller and that much faster and more secure.
These numbers give some indication of why OpenBSD users are so passionate about their OS, it isn’t just
the worlds most secure operating system, but arguably the simplest and most elegant modern UNIX
alternative too. No other UNIX operating system have developers with such a hardline approach to quality
and simplicity.

- 59 -

Nevertheless idealism comes at a cost, OpenBSD is not built for heavy loads and supersonic speeds,
and it is much easier to port applications to FreeBSD (or NetBSD) then OpenBSD. While there are a
decent 10,000 ports available for OpenBSD, FreeBSD has nearly 30,000 (NetBSD has nearly 20,000)! And
remember we are talking about source code projects here, the number of binary packages will be twice this
size. Many popular applications and features such as Wine, Skype, Steam, Flash, VirtualBox, multilib sup-
port, and Linux and Solaris emulation (necessary to support ZFS) are only available on FreeBSD (and
NetBSD). And FreeBSD is the only BSD alternative that comes with desktop oriented distributions, such
as TrueOS and GhostBSD. If Linux is the ‘‘Windows-killer’’, then FreeBSD is the ‘‘Linux-killer’’. It can
replicate your Linux workflow with ease while providing a server that even rivals Solaris! (of course
OpenBSD users avoid FreeBSD for precisely the above mentioned reasons)

The parentheses around NetBSD here are intentional. All the limelight usually goes either to the
friendly fatty,or theobnoxious onslaught,so it’s easy to forget that there is a third* alternative: thenifty
nerd. The NetBSD folk have an extremely pragmatic and down-to-earth approach to development. If some
external tool is good enough, use it. If the problem isn’t too big, don’t worry about it. When these
developers do take action, they do so with quiet professionalism, doing a phenomenal job without anyone
noticing. As Michael W. Lucas once said:If the NetBSD guys start a secret ninja club, we will all be dead
without knowing it.NetBSD may only have two thirds as many ports in their repo as FreeBSD, it may only
have half the security mitigations of OpenBSD, but it still is a darn good operating system! It is
significantly simpler then FreeBSD, but provides much more applications, and is easier to port software to
then OpenBSD. It also has some unique tricks up its sleeve, from kernel Lua scripting, cross-compiling
auto builds and reproduceable binaries, to a Ports Collection that works across multiple operating systems
(pkgsrc is in fact a superb addition to Haiku and Solaris!). Lastly it’s quite famous for its absurd level of
support for obscure hardware. If you want to put BSD on your toaster, there is only one candidate!

Superficially though all the BSD variants are very similar, and it’s not uncommon for a BSD user to
use several variants in his workflow. In fact the only differences from a BSD desktop and a Linux one, is
entirely under the surface. The BSD’s have simple core utilities of high quality with readable manpages,
and the system is very well organized. For example sources for/bin/cp and /usr/bin/wc is
/usr/src/bin/cp and /usr/src/usr.bin/wc . respectively. All 3rd party applications are
installed in /usr/local , providing a clean separation between base and ports. The Ports Collection
itself is well organized and it’s easy to inspect and modify. System configuration is much cleaner, with
nearly everything centralized into a single file:/etc/rc.conf . On the surface Linux can give you the
same user applications, but if you peek under the carpet things are decidedly more messy! Since software
usually comes first to Linux, the BSD repos may be missing some of the latest updates or proprietary
offerings, but this is a small price to pay for the added stability, cohesiveness, documentation and overall
quality that these systems provide.

FreeBSD comes with a very good Handbook which should get you up to speed quickly, NetBSD also
has a good User Guide. OpenBSD has an informative FAQ, and you might want to invest inAbsolute
OpenBSDfrom M. Lucas, if you’re planning on using the system seriously. Another pro book tip for all
the BSD’s is the old classicUNIX Power Toolsfrom O’Reilly.

* And a fourth, DragonFly BSD (daring deadbeat?), which even the NetBSD users tend to forget about...

- 60 -

5.5. Desktop

OpenBSD NetBSD FreeBSD
name src man name src man name src man
twm 29,012 24 twm 29,001 24 Lumina 442,308 14
fvwm 46,749 51 ctwm 32,035 51
cwm 5637 3

FreeBSD and DragonFly does not come with a desktop by default. Lumina was created by the
TrueOS developers, in response to the ever increasing effort required to porting KDE to FreeBSD. It is
fairly similar to LXQt, and it’s the only desktop beyond window managers that has come out of the BSD
camp. Having that said all of the BSD’s include dozens of desktops and window managers from Linuxland
in their Ports Collection. Only the biggest and most unreasonably obtuse desktops aren’t always available,
it took years for the FreeBSD Ports Team to import GNOME 3 and KDE 5 for instance, and it was absolute
hell for those poor devils! KDE 5 isn’t even ported to OpenBSD yet (due to Wayland dependence).

The default OpenBSD desktop,fvwm, is the old version, notfvwm2 that is all the rave nowadays.
cwmis inspired by evilwm , but rewritten from scratch, presumably because it wasn’t quite evil enough.

I must admit, I was quite biased against the NetBSD desktop, presumably because previous experi-
ence with ctwm, which NetBSD uses as its default desktop, had left a bad taste in my mouth. The
memory usage of NetBSD was also atrocious, using more RAM then Debian running Xfce! The reason for
this high memory usage though, is that NetBSD uses a significant slice of available RAM as temporary
storage for /tmp . Once that is taken into account, the memory usage is not much worse then its
competitors. And the developers have even managed to pull off a fairly tastefulctwm setup. Most users
will probably find it uninspiring though, but as mentioned, there are plenty of 3rd party options available.

Naturally all these window managers depend upon the X Window System, OpenBSD ships with its
own fork, called Xenocara, but it’s virtually identical to Xorg. The combined source code of Xenocara is
nearly 10.2 million lines of code, twice the size of the kernel. Manpages for Xenocara span 5900 pages,

- 61 -

more then all manpages for general user commands combined. What gain is there in a simple and light-
weight window manager, when it has to run on top of the Cthulhu monstrosity that is X?

5.6. Programming

Traditionally BSD systems used the GNU Compiler Collection like everyone else, but in recent years
FreeBSD and OpenBSD have switched to the new rival Clang/LLVM compiler suit, whereas NetBSD and
DragonFly stick with the old GCC. Both are about 10 million line monstrosities, but doing something use-
ful with them require that you learn the system libraries in addition, covered in section 3 of the manual, in
OpenBSD they span 2100 pages, in DragonFly 10,800 in NetBSD 14,500 and in FreeBSD 26,300 pages.
The beautifully craftet code of the small BSD utilities, stand in stark contrast to the overall complexity of a
modern C development environment.

Perl is also included in OpenBSD and used various places throughout the system. The package man-
ager is written in it for instance. NetBSD includes Lua by default. Of course you can find pretty much any
programming language or tool you want in the repository, so virtually any kind of development workflow
in Linux can be reproduced in all the BSD’s. A good book tip for traditional C programming in BSD,
besidesThe C Programming Language,is the classicAdvanced Programming in the UNIX Environment.
Programming in C is especially nice in BSD, because you have easy access to a wealth of high quality
source code. Just reading the source code of basic utilities likens , cat , grep , etc, is a very good way to
become a proficient systems programmer.

5.7. Kernel

The total manual pages for section 2 and 9, covering system calls and kernel internals, is about 640
pages for OpenBSD, 5080 for DragonFly, 8430 for NetBSD and 16,000 for FreeBSD.

- 62 -

OpenBSD NetBSD Minix DragonFly FreeBSD
name src src src src src comment
boot 3645 3758 - 10,218 2594 startup procedures
sys 19,563 33,536 11,385 32,654 47,852 headers
kern 71,789 132,855 51,952 108,156 201,693 kernel facilities
ddb 64,195 5003 49,802 3288 22,792 debugging, testing
compat - 158,620 - - 147,951 compatibility layers
crypto 9513 18,207 - 12,464 273,113 cryptographic support
security - 2441 - - 29,530 various security features
dev 4,676,156 2,566,912 113,318 2,790,450 3,343,354 device drivers
fs 66,122 219,960 9793 139,031 702,554 filesystems
net 141,005 210,900 15,078 253,965 482,410 network
misc 30,504 847,948 122,707 175,465 862,907 miscellany
arch 443,029 1,545,613 - 36,298 560,015 architecture dependent code
sum 849,365 3,178,841 260,717 771,539 3,333,411 sum without drivers
all 5,525,521 5,745,753 374,035 3,561,989 6,676,765 sum with drivers

Beasty is in the details, as they say, and these statistics reveal some major differences between the
various BSD’s. OpenBSD has even greater driver support then FreeBSD in addition to supporting many
obscure architectures, but the kernel itself is minuscule, if you exclude device drivers and architecture
dependent code it is not much larger then Minix! This simplicity lies at the heart of OpenBSD’s fame to
security. For mitigations such aspledge (2) and unveil (2) to be effective, the entire source tree needs
to be rewritten. This is done with relative ease in OpenBSD, but it would require unbelievable amount of
effort to consistently incorporate into NetBSD or FreeBSD, not to mention Linux. It also explains
OpenBSD’s resistance to ZFS, importing this filesystem would effectively double the size of the kernels
core. The developers are aware that something needs to be done with the archaic filesystem support, but as
of yet it is unclear in which direction OpenBSD will go.

As for NetBSD, it sits somewhere between OpenBSD and FreeBSD when it comes to kernel features.
It has unprecedented support for obscure architectures, and very good compatibility support for various
binaries. And yet support for popular hardware is actually quite bad, and the extensive compatibility layers
are a security nightmare.Of course it runs NetBSD,as the popular slogan goes, but perhaps we might add:
unless you’re using normal hardware.

Although FreeBSD initially focused on the PC platform alone, it has since been ported to many dif-
ferent architectures. The import of ZFS from OpenSolaris in recent years, accounts for the huge increase in
filesystem source code. The FreeBSD developers are in many ways trying to compete with Linux, and thus
the majority of their attention is devoted to expanding kernel features, to support vendor applications and
compete in the enterprise market. To a much greater extent then the other BSD’s, the practical userland is
delegated to the Ports Team (which in all fairness is doing a good job), one example of this is that there is
no graphics support at all in FreeBSD base.

As for DragonFly, it split from FreeBSD way back in simpler times when the dinosaurs thought wire-
less roaming was a nifty idea, and they are getting a bit long in the tooth. One big innovation though is
their Hammer filesystem, it has some of the features of ZFS, but is far simpler. Yet despite being a quasi-
research project, DragonFly BSD can operate as a general purpose operating system. Minix however is
purely a research operating system, and unless you are developing a product on embedded devices, it would
be hard to use it on real hardware doing real work. The kernel itself is actually just 18,000 lines of code,
and it runs the filesystem, networking and so on as userspace applications. This gives the operating system
tremendous stability, if the filesystem crashes for instance, the kernel will just restart the filesystem applica-
tion and carry on.

Minix is very well documented in Tanenbaum’s bookModern Operating Systems, 3rd Edition
although the text is a little bit out of date. As for FreeBSD a good textbook discussing its internals isThe
Design and Implementation of The FreeBSD Operating Systemavailable from Addison Wesley.

- 63 -

6. LINUX and SOLARIS

In the early 80’s UNIX had existed for over a decade and a surprising amount of variants existed all
over the place, AT&T made an effort to centralize all these forks and their innovations, including many
from the BSD camp, into one unified system. This work eventually resulted in a commercial UNIX called
System V, with this base many corporations built their own proprietary varieties of UNIX with AT&T’s
blessing. Solaris from Sun Microsystems was one such commercial flavor, arguably the most successful of
them. With the rising popularity of Linux, Sun decided to opensource their operating system in order to
better compete in this growing market, and released OpenSolaris in 2005. Although Linux tries to mimic
System V closely, making these two systems very much alike, the relationship between their respective
communities remained strained. Whether this was due to decades of corporate evilness from Sun, or the
religious fanaticism of the GNU freedom fighters, is hard to say.

In any event before OpenSolaris had really taken off, Oracle bought Sun. What then ensued might
perhaps best be described asthe Silicon Valley chainsaw massacre.Oracle basically went in and tore
everything a-Sun-der, doing its best to sabotage all of their projects. One can only speculate as to the
business strategy behind this mayhem, but the result was that a number of community forks, such as
LibreOffice and MariaDB, sprang up and saved some of the former Sun projects from the flames. Illumos
was one such community effort that picked up the pieces from OpenSolaris and continued its development.
Today there are several distributions of Illumos, most of which are very alike* but are aiming for different
goals. OpenIndiana is a very feature-full distribution providing both desktop and server solutions, whereas
OmniOS focuses exclusively on the server market. In later years there has been much collaboration
between Illumos and FreeBSD, and Solaris technologies such as ZFS and DTrace have been ported to
FreeBSD and NetBSD, whereas Linux adoption of these tools has been slow.

*) the term Illumosdistribution may confuse Linux users. Illumos isn’t just a kernel, but a complete operating system
including userland and libraries. So Illumos distributions all share a fairly large common base.

- 64 -

Larry Ellison, CEO of Oracle

Linux is by far the most popular opensource operating system today, unlike many of the other candi-
dates here it does not originate directly from UNIX, but was written from scratch. Nevertheless it is abso-
lutely a UNIX clone, as it tries to mimic this operating system in minute detail. Also in contrast to most
operating systems, Linux is only a kernel, the core component responsible for handling hardware devices,
allocate memory and CPU resources between programs, providing a filesystem, networking and so on, but
doesn’t provide any user applications.

To get a practical system, the Linux kernel must be distributed with a userland and libraries. Usually,
these are made up of the GNU ‘‘operating system’’, which is unique itself in that it has everything except a
kernel. Both these projects complement each other nicely and makes the practical ‘‘Linux’’ (or
GNU/Linux as the GNU people like to call it) operating system possible. Of course modern distributions
are usually bundled with quite a few additional extras, such as a fancy desktop and web browser and what
not. The job of combining all these disparate projects into one cohesive system is delegated to independent
distros. There are several hundred such distributors of Linux, some are backed by multi-million dollar
companies, and some are hacked together by geeks with too much spare time on their hands. The ones
included here are the classic distros Debian and Slackware, free counterparts to the commercial distros Red
Hat and SUSE, ie. AlmaLinux and openSUSE. The complete decoupling of the Linux kernel with its
userland and libraries gives the operating system unusual flexibility. This is exploited by many proprietary
systems, such as Android. We will not analyze that system here, but we will look at the minuscule Tiny
Core and Alpine Linux that does away with all the GNU stuff and opts for a much smaller environment.

The majority of userland applications in Illumos, and indeed BSD, are imported from Linuxland, so
unless there are unique Illumos programs of interest only Linux applications will be listed. And since there
are no ‘‘standard’’ applications in Linux, we will just list a handful of popular choices. The ones that have
been ported to OpenIndiana* will be marked with an asterix (all of them have been ported to the BSD’s).

*) Technically Illumos is a fork of OpenSolaris, which is a fork of Solaris. But these systems are so alike that I will often
use their names interchangeably. ‘‘Solaris’’ is less specific then ‘‘Illumos’’ though, ‘‘OpenIndiana’’ is very specific.

- 65 -

6.1. Text Editors

name src man name src
ed* 3059 1.5 editor 526
ne 47,704 1.5 mousepad 112,168
jed 64,669 5 gedit* 352,996
joe* 95,044 62.5 geany* 411,372
elvis 116,253 9 kate/kwrite 495,744
nano* 196,407 7.5 kdevelop 914,587
vim* 1,001,639 8 qt-creator 2,219,929
emacs* 1,860,600 8.5 netbeans* 7,441,863

Mousepad from the Xfce desktop is probably the closest equivalent to Notepad for Linux. Gedit and
Kate (or the more simplistic Kwrite) are the standard editors for Gnome and KDE (Mate uses a fork of
Gedit called Pluma). There are also a handful of more elaborate IDE’s for Linux, although none can really
compete with Microsofts Visual Studio. As a basis for comparison, the popular Notepad++ editor on Win-
dows is 514,578 lines of code, which is about on par with the simple GUI programming editors for Linux,
but only a fraction of the size of vim, or Emacs. Windows developers frequently lament the lack of a good
alternative to Visual Studios in Linux, but there are many candidates that are at least halfway there,vim
being one of them. The old joke about Emacs being an operating system that only lacks a good text editor,
does have some basis in reality as far as complexity is concerned. UNIX was created because Multics was
too bloated with its whooping 300,000 lines of code. GNU Emacs is 6 times bigger then that.

Despite the large collection of alternative editors, it is surprisingly hard to find a simple text editor
for Linux. The Tiny Core Notepad-like FLTK ‘‘Editor’’, is a pleasant exception. As is the Busybox imple-
mentation of ed and vi included in the distro, having 751 and 3426 lines of code, respectively.

- 66 -

But one may wonder; is it really possible to develop good code with such simple tools? Yes. Writ-
ing good code is hard, the only way to do so is to think until understanding dawns. When code breaks, step
away from the keyboard! Think. Explain the code to a stuffed teddy bear in close proximity (no really!).
Go outside, take a walk. Under the best of circumstances, using a sophisticated IDE does not significantly
reduce the effort needed to understand your code, and no amount of sophistication can help the debugger
develop the needed characteristics in his programmer. To quote Pike & Kernighan:

As a personal choice, we tend not to use debuggers beyond getting a stack trace or the value of a
variable or two. One reason is that it is easy to get lost in details of complicated data structures and
control flow; we find stepping through a program less productive than thinking harder and adding output
statements and self-checking code at critical places. Clicking over statements takes longer than scanning
the output of judiciously-placed displays. It takes less time to decide where to put print statements than to
single-step to the critical section of code, even assuming we know where that is. More important,
debugging statements stay with the program; debugging sessions are transient.

For serious programmers, I highly recommend the old book from which this quotation is taken,The
Practice of Programming.The tools we use today may have become more complicated, but the essential
skills needed by a programmer are still the same. If anything, these skills have become increasingly
important as the world around us has grown more convoluted.

6.2. Office

name src man name src
groff* 209,547 14 xpdf 122,623
texlive* 7,831,989 335 evince* 258,612
diction 10,535 2 okular 435,321
WordNet 24,773 5.5 abiword 888,930
ispell 14,383 16 gunmeric* 1,861,343
aspell* 88,445 34.5 calligra 4,057,156
hunspell* 102,616 11.5 libreoffice* 9,243,483

- 67 -

The numbers for KDE’s Calligra office suit does not include the sources for Krita, arguably its main
claim to fame. The suit contains a great many programs, but most are somewhat crude in comparison to
more mainstream office suits. In contrast, the Gnome office suit consists of only two applications, the word
processor Abiword, and the spreadsheet Gnumeric, but these work very well. LibreOffice, the OpenOffice
fork, is of course the big one, and the only candidate that is really a viable alternative to Microsoft Office.
It does a relatively good job in this respect, it is quicker, has better file format, scripting and platform sup-
port, let alone good documentation and an open development model. But it obviously isn’t 100% compati-
ble with Microsoft Office, which seemingly is sufficient reason to condemn the whole project as obscure by
the general public. Happily Gnome office provides an even less compatible suite, which is that much snap-
pier and more robust.

There are many more office tools in Linuxland we could have mentioned, and for a casual user there
should be plenty to choose from whatever your needs are. GNUCash for managing finances, Scribus for
designing magazines, Lyx for writing LaTex documents and Inkscape for vector graphics, are some popular
productivity applications. But for serious book publishing, there is sadly no opensource offering that can
compete with large proprietary suits, such as those from Microsoft or Adobe. It is sad enough that the
world has grown dependent on overblown software, double so that its addicted to proprietary solutions.

Speaking of bloated software, GNU troff, orgroff , is huge if you compare it to the old UNIX
troff . Its obesity is that much more serious as it doesn’t handle itself very gracefully, especially when
dealing with unicode input. But these problems pale in comparison to modern Tex (which also has unicode
issues). The author of Tex was mightily impressed withtroff way back in the 80’s, it only lacked one
or two features that he wanted. 40 year later all the bees in the world died because of the massive burden
Tex had on the environment. This tragic story is entirely typical of a software projects normal life cycle.

6.3. Internet

- 68 -

name src man name src name src
links* 96,383 5 netsurf 299,306 lighttpd* 99,312
w3m 101,171 10.5 falcon 323,500 nginx* 175,208
lynx* 283,061 22.5 qt-webkit 1,702,124 apache* 555,430
mailx* 92,578 157 firefox* 31,236,630 exim 133,615
mutt* 260,907 4.5 chromium 33,674,513 postfix* 219,151
irssi* 102,523 1.5 clawsmail* 644,993 dovecot* 544,130
weechat 584,075 4 thunderbird* 32,994,427
rsync* 74,581 89 hexchat 250,282
wget* 309,642 38 pidgin* 1,232,782
curl* 329,184 96 transmission* 530,372

Modern web browsers have become almost inexplicably complex, it’s on par with the biggest operat-
ing system kernels and desktops, and in truth it has absorbed the roles of both.* If you have both Firefox
and Chrome running on your Linux GNOME desktop, you are essentially running three desktops and three
operating systems simultaneously, Linux and GNOME being the lightweighters. To put things into per-
spective, lets imagine that the Firefox source code doubles in size the next decade. The browser would then
be big enough to incorporate the functionalities of the multimedia player VLC, the 3D editing suite
Blender, the KDE office suite Calligra, the image editing suite Gimp, the Xfce desktop with all its applica-
tions, the FreeBSD kernel with all its drivers, the Battle of Wesnoth game, in addition to SuperTuxKart,
DosBox and all of the KDE games, with room to spare! In actuality Firefox has grown by 405% in the last
10 years, if it continues to grow at the same speed, by the early 2030’s it will be twice the size of KDE
Plasma desktop with all of its applications, and five times the size of the OpenBSD operating system with
all of its components. One can only imagine the horror 10 years after that.

A good OS in a bad OS in a good OS

Isn’t that a good thing? After all everyone has a browser, right? No. Browsers are not automatically
portable because they are popular. On the contrary, as web browsers grow increasingly complicated, the
effort to support them on various operating systems increases. The more complex a browser becomes, the
lessubiquitous it will eventually be. If fact we are already seeing this. Alternative operating systems, such

*) Not only are there fully fledged browser based operating systems, such as FriendOS, but there are fully fledged browser
based virtual machines from which you can run ‘‘normal’’ operating systems (which can also run web browsers themselves
(which can probably also run operating systems (and so on ad infinitum...)))

- 69 -

as the BSD’s, are struggling to keep up. Even Opera and Microsoft eventually abandoned their browsers,
and just copy pasted Chrome, because it was justtoo much work.It is telling that Microsoft do not have the
resources to make a web browser these days! Small wonder then that the once mighty Firefox is now
loosing the fight. A cynical man might say that it’s poetic justice that the Mozilla monster is being slowly
crushed by the complexity it helped to create, but I just think it’s sad.

Besides, if we accept that the web browser should take over the responsibility of our operating sys-
tem, it is only fair to compare the quality and overall design elegance of these browsers to real operating
systems. But since I have managed to refrain from cursing so far in this article, I think it’s safest not to
make any such attempt. Lets just say that if anyone believes that there is grace and wisdom in the code of
their favorite browser, I cordially invite them to read the source code and find out. I’ll get back to you
when you are done, say, in 30 years or so.

6.4. Shell

Linux Illumos
name src man name src man
es 8576 30
dash 20,923 29 sh 8959 -
tcsh* 69,487 82 csh 13,108 37 pages
zsh* 188,621 7 -
ksh93* 198,140 64.5 ksh 73,509 67.5 pages
fish* 362,148 -
bash* 381,782 116.5

Both Solaris and most Linux distros usebash as their default shell, although Solaris also ships with
ksh93 . Some Linux distros usedash as their default shell. Though not necessarily faster thenbash
this shell has strict POSIX compliance, and is the only popular alternative which in any way can be referred
to as ‘‘light’’. zsh and fish are popular choices among hipsters and newbies, respectively. While
tcsh and es are only used by weirdos, such as FreeBSD and Plan 9 fans. There are even more obscure
shells out there, for people weirder then me, if you can imagine!

In popular Linux distributions a user can install and run their operating system without ever having to
dip their toes into the murky water of the command line, and no doubt this is one of the reasons why Linux
is so much more popular then, say OpenBSD. Nevertheless it is the shell more then anything that separates
UNIX from other operating systems, and it is only by using it that the system stops being a mere toy and
starts to become a serious tool. Especially in Linux the wealth of command line tools are overwhelming, to
the point of being ridiculous. It is only on the Linux console that you can watch videos, or have spinning
ASCII 3D desktop cubes, for instance.

And yet strong conservatism hinders important progress. Why do modern shells emulate teletypes
from the 70’s? Why isn’t GUI’s more integrated with the command line? Why is unicodestill not
universally supported? Unlike most operating systems, the kernel, the system libraries and the userland
applications, such as the shell, in Linux are completely decoupled, so there is no valid reason to refrain
from experimental innovation. Sadly though the iron wall of backward compatibility prevents that. In my
humble opinion, none of the shells listed here can compare to the elegance and power of the Plan 9, Inferno
or SerenityOS shells. Small wonder then that fewer and fewer people are interested in the command line.

Yet there is hope. Alpine Linux throws out the GNU userland and its glibc in favor of the minuscule
BusyBox and musl library. Tiny Core follows a similar course, but focuses more on creating a RAM-only
system with a minimal GUI, using a custom fork of X and the tiny FLTK toolkit. These fairly recent pro-
jects, and others like them, display a welcomed out-of-the-box thinking. Yet, their simplicity is mis-
matched by the comparatively bloated Linux kernel. In fact, the kernel source is about two orders of mag-
nitude bigger then the entire Alpine/Tiny Core userland. What would really have been interesting to see is
a tiny fork of the Linux kernel, 10 or 20 times smaller then the default, coupled with BusyBox and musl.
Such a tiny distro wouldn’t just be on par with the BSD’s, but on par with Plan 9! Such simplicity would
likely lead to much greater flexibility and innovation. Alpine and Tiny Core are absolutely a step in the
right direction, but further steps need to be taken before Linux can really live up to its potential.

- 70 -

6.5. Applications

GNU Busybox Illumos
name src man src src man
echo 212 1.5 163 94 4.5
cat 516 1.5 102 391 5.5
ls 4055 4.5 825 2441 31.5
find 10,636 30.5 1029 1768 12.5
cp 1019 3 135 - 6.5
wc 773 1 139 - 3.5
sed 168,932 5.5 1042 1912 8
awk 203,099 39.5 2631 5962 26
tar 322,179 21 812 6793 16
sort 3365 3 412 4882 9.5
tail 1774 2 278 1760 3.5
ps 4924 21.5 523 2994 15
file 51,725 9 2829 4
grep 197,735 12 642 1107 5
date 503 4 204 325 5.5
bc 27,053 14.5 5925 882 5
less 27,537 33.5 1466 - 34.5

Richard Stallman - the charismatic GNU leader

Although Illumos has imported many Linux utilities, such asbash and vim , the core utilities are
quite different. In terms of complexity the Illumos tools look a lot like simple BSD variants, whereas the
GNU utilities bear a closer resemblance to obese dinosaurs. That isn’t to say that Solaris is in any way a
minimalistic system, on the contrary, it is in many ways a far more professional* system then Linux or the
BSD’s. The cmd directory in the Illumos sources, containing utilities, consists of a staggering 2.5 million

*) read: bloated

- 71 -

lines of code and consists of about 470 distinct projects. In terms of source code, this is about 10 times
larger then FreeBSD’s collection of utilities. Like the BSD’s, and in contrast to Linux, both the Solaris
kernel and its userland are written by the same development team, making the system very cohesive and
integrated. It was a major player in the enterprise market and backed by serious corporate finance. The
SMF service manager, NWAM network manager, and ZFS filesystem makes Systemd, the Linux Network
Manager and BtrFS look like a bad joke. FreeBSD has adopted DTrace and ZFS from Solaris, but it’s a
long way from being as polished and integrated, and FreeBSD Jails cannot hope to compete with Solaris
Zones. Today though the corporate backing is gone, and only a thin community remains. Even though
they are doing their best to keep the system afloat, innovation has slowed down considerably and the future
of Illumos seems bleak at best.

In addition to these issues, Solaris has never been a very good desktop system, however superb it
may be as a server. OpenIndiana provides a nice looking Mate desktop, and a handful of the usual user
applications, such as Firefox, LibreOffice and VLC. But the repository is very small, in fact in terms of
casual desktop usage, even Haiku has a larger selection of applications (with the notable exception that it
doesn’t have Firefox). There are only three games and five desktops available for example, which com-
pared to BSD and Linux is infinitesimal. The applications that are available may not be very well sup-
ported either. On my tests, Wine, VirtualBox and NetBeans were completely broken, and Firefox, Thun-
derbird and DosBox were somewhat flaky and crash prone. Using Illumos as a desktop will likely involve
quite a bit of manual compiling. But here’s a pro tip: it’s possible to bootstrap NetBSD’s pkgsrc on Solaris.
Just head over towww.pkgsrc.org and read the article aboutusing pkgsrc on Solaris(this article talks
about Solaris 10, so some details are different in OpenIndiana). Pkgsrc has only about two thirds the Ports
of FreeBSD, and to be sure, not all of the packages it does contain will compile easily in Solaris,
nevertheless it still means a tremendous expansion of available software. Among other things pkgsrc

Is it a BSD? Is it a Linux distro? No, it’s UNIX man!

includes nearly 500 games and over 100 desktops and window managers.

- 72 -

The Linux community on the other hand is a very loosey-goosey coalition of developers all around
the world, which have created an unbelievable amount of software. It is the only opensource community
that has enough breadth to seriously challenge popular commercial offerings. Its open development model
has also encouraged research projects, such as CERN and NASA, to use it as their main OS platform. The
impact Linux has had on the web and in enterprise is huge, 100% of the top 500 super computers in the
world are running Linux, and only two of the top 50 websites in the world are not. BSD, Illumos and other
opensource systems have benefited greatly from the popularity of Linux. As most of their applications,
developers and users themselves, are imported from its ecosystem. The rise of Linux has proven the viabil-
ity of opensource systems to the world.

But there are problems in paradise. Even though there are a greatmanydifferent software projects in
Linuxland, it is very hard to actually get Linux developers together and work towards a common goal. To
some extent this is understandable, since Linux isn’t a single project, but many separate projects duck-taped
together. The kernel developers have no control whatsoever over the GNU developers, which in turn have
no influence over the Mozilla or KDE developers, and so forth. But the fractured nature of Linux goes
even deeper then that. As an example, Solaris and FreeBSD lets you choose between two filesystems
during installation, the old one, UFS, and the new one, ZFS. In Slackware Linux you are presented with no
less then seven filesystems (not including more esoteric options like RaiserFS2 or OpenZFS). All of these
are implemented by the same ‘‘group’’ of developers. When even the operating systems very core is so
fractured, is it then any wonder that applications in Linuxland are divided too? Alas, the promised land
floweth with mediocrity and alpha releases! There are literally hundreds of desktops and programming
languages available for Linux, but no desktop can rival that of MacOS, and no IDE can rival Virtual
Studios.

Other Applications

Graphics Multimedia Games
name src name src name src
feh 14,823 moc 79,496 dosbox* 225,599
gwenview 161,700 audacious 84,771 gnuchess 241,546
gthumb* 366,284 sox* 90,045 nethack* 299,593
imagemagic 654,692 mplayer 456,832 aisleriot 332,703
blender 2,652,234 kdenlive 692,148 hedgewars 604,878
digikam 2,954,228 amarok 1,178,058 supertuxkart 1,054,936
gimp* 3,003,548 ffmpeg* 1,257,600 kde4-games 2,269,842
krita 3,487,103 audacity* 1,472,655 scummvm 3,683,377
inkscape* 2,989,015 vlc* 2,535,834 wesnoth 4,893,311

When observing this bewildering multitude of projects in the Linux community, it is a strange para-
dox that pockets of ultra conservatism also exits throughout. There is only one kernel for instance, even
though Linus Torvalds have requested forks. And though there are alternatives to Systemd, PulseAudio, X
and GNU coreutils, virtually no one uses them. Beyond differing wallpapers and icon sets, there is remark-
able monotony among the hundreds, if not thousands, of Linux distros out there. Bizarrely the Linux com-
munity is often quite hostile towards other operating systems. Many technologies from Solaris and BSD
would have greatly augmented Linux, but there is little interest in the community to import them. To some
extent this hostility might be contributed to the Free Software Foundations obsession with freedom. It is
fine that the FFS wants to share and share alike, but claiming that they have the sole right to define what
‘‘freedom’’ means, is taking things a bit far. BSD and Solaris are free systems, they are developed by vol-
unteers and distributed, source code included, with no strings attached. When the FFS still views then as
‘‘tainted’’, they have abandoned discussions of fair play, and entered a political, if not a religious, domain.
It is telling that the GNU camp will talk your ear off when it comes to philosophies about freedom, but will
not have much to say about the technical aspect of development (in the BSD camp it’s the other way
around).

- 73 -

In truth BSD, Solaris and Linux, among others wouldn’t be where they are today without each other.
There is no such thing as a ‘‘perfect system’’, they are all beautiful in their own unique way. We are all
brothers, so lets stop this destructive infighting, lets hold hands in friendship, share a laugh together, and go
pitchfork the Windows users already!

Different Linux distributions have their own support forums and wikis, but it’s surprisingly rare to
see good documentation. A couple of good resources areThe Linux BibleandThe Linux Command Line
and Shell Scripting Bible,both from Wiley. The Arch Linux wiki is also a very good source of
information, even for distributions that has nothing to do with Arch. A good resource for Illumos, although
it is a bit dated, isThe OpenSolaris Bible,also from Wiley.*

6.6. Desktop

name src man name src
dwm 1956 3 LXQt 1,115,250
ratpoison 13,429 16 CDE* 1,643,270
i3 52,883 6.5 Enlightenment* 1,931,513
notion* 71,048 8 Xfce 3,022,561
awesome* 90,269 5 Mate* 9,284,364
flwm 3591 4.5 GNOME 15,452,992
jwm 27,639 27 Trinity 33,730,011
twm* 33,280 24 KDE4 14,434,682
fluxbox 84,375 2 Plasma 54,140,352
icewm 148,483 18 Compiz* 182,362
wmaker 215,057 3 FLTK 246,333
fvwm2 239,920 142 GTK4 3,069,379
afterstep 247,023 - Qt5 34,276,808

*) No, I am not sponsored by Wiley, but if you are reading this Wiley - give me a call and we’ll talk terms...

- 74 -

There is a huge variety of alternative desktops and window managers for Linux, the FreeBSD Ports
Collection has about 100 projects listed under itsx11-wm category for instance, and the choices in most
Linux distros are even greater. Naturally the vast majority of these projects are small window managers,
full blown desktop environments are more rare. To simplify immensely, there are two big ones: The GTK-
based GNOME and the Qt-based KDE. GNOME3 proved highly controversial, and has inspired numerous
spinoffs and rewrites, such as Cinnamon, Unity, Pantheon, Budgie and COSMIC (a Rust rewrite of the
latter is in the works), in addition to the old timers GNOME2 (in the form of Mate), and Xfce. The Qt
family has some disparity too, albeit not as dramatic; Trinity is a continuation of KDE3, and LXQt and
Lumina are lightweight desktops. There are desktop initiatives besides these two families, but interest in
them is scarce. Enlightenment, with its EFL toolkit, is probably the most successful, and CDE and
GNUStep, although important in the past, has long seen their heyday. Mezzo and Project Looking Glass
were examples of truly novel GUI design, but they were totally ignored by the community.

If we look at window managers* the list becomes even larger! You can basically divide these numer-
ous projects into two main categories; stacking window managers that follows a traditional place-and-
resize-by-mouse window placement, and keyboard-centric tiling window managers that auto-place win-
dows in a grid. Auto-snap and tiling-mode extensions in modern desktops are highly influenced by the lat-
ter. Heated flame wars about which is the ‘‘best’’ desktop is a popular and time honored pass-time for
Linux users. And there is no end to online blogs discussing the minutia of GUI differences from one distro
to the next. Superficially though, there is no great desktop difference between the distros we have analyzed
in this article, save for TinyCore, which provides a very unusual and super minimalistic experience. All the
others offer popular desktop alternatives, and let you install a host of more obscure window managers. If
fact, there is surprisingly little difference even between the large families of Linux distributions. Sure,
there are different package management systems, and front-end admin tools, but at the end of the day, you
usually work on the same programs. Any distro can be made to look as familiar or unfamiliar as you like,
and tweaked and mangled to suit whatever needs you have. There are heated flame wars to be sure, but in
actuality they are usually pointless arguments over trivialities.

The desktops listed above have a fairly comprehensive count of their respective source code projects,
but they do not include everything, and more importantly, not dependencies. If they did, these numbers
would easily triple or more. Despite the wealth of choices, no Linux desktop or window manager that I am
aware of, do a good job of integrating with the terminal and following UNIX design principals, as the Plan
9 window manager does. One problem here is X itself. X is a 10 million line convoluted monstrosity,
building something simple with it would be like creating a well run department within a suffocating bureau-
cracy. It is an oxymoron. Tiny Core ships with its own fork of the ancient Xvesa version of X. It is not
especially pretty, but at 1/100 the size of modern X, the simplicity at least is refreshing.

In recent years the Linux community has been very hyped over the new Wayland display server. It is
indeed good that modern UNIX finally gets an alternative to X, but as far as simplicity and UNIX design
principals are concerned, Wayland does not, by itself, have much to offer. But it does push much more of
the development responsibility onto the individual graphical applications. This is both good and bad. On
the one hand, it means that Wayland is simpler then X, and it means that desktops and big graphical appli-
cations have more freedom to design the interface they want. On the other hand, it does mean that it
requires more effort to develop window managers and simple applications. In theory though, developers
have more freedom to experiment with new interfaces, and hopefully this can stimulate more innovative
and effective designs. So far though, truly innovative ideas have been scarce, and realistically, Wayland
will probably do the very same thing that X did; fuel the drive to copycat attractive but ineffectual propri-
etary systems.

*) A window manager, is a program that does exactly that; manages windows. It might provide a menu, maybe even a
panel, but no toolkit, applets, docklets, whatlets and other applications that a full desktop environment provides. As such
they are usually orders of magnitude simpler then mainstream alternatives, and they can be highly productive in the hands
of an expert, but novice users will frequently find them challenging and/or boring.

- 75 -

6.7. Programming

name src name src name src
rust* 12,666,824 lua* 33,600 cvs* 125,645
clang* 10,912,614 sbcl* 531,780 mercurial* 517,670
gcc* 9,642,336 clisp 879,276 git* 849,017
OpenJDK* 9,038,582 tcl* 1,055,095 subversion 1,419,103
go* 1,911,723 perl* 1,298,701 sqlite* 322,030
ghc 660,821 python3* 1,312,803 postgresql* 1,633,084
nasm* 158,257 ruby* 1,950,412 mariadb 4,397,646

Solaris came with its own development suit called Sun Studio, which included compilers for C, C++
and Java, and other basic tools. Both Sun Studio, GCC and Clang can be installed in Illumos. Perl and
Python are included by default. Most Linux distros do not ship with many programming utilities, but all of
them have a rich set of tools available in their repositories. In fact Linux has become somewhat of a breed-
ing ground for bleeding edge computer science, and most new and weird programming languages are born
in this chaotic environment. This versatility is both good and bad, since the great multitude of choices can
be very confusing for aspiring new developers.

Another serious issue, that is clearly seen from the numbers above, it the share complexity of modern
programming languages. The question of whether it is the complexity of applications that is bloating the
languages, or if the languages are bloating the applications, is somewhat of a chicken-or-egg question. In
any event, the situation is not pleasant. Recent years has seen a lot of new development in this area, such as
the memory-safe languages Rust and Go. It is indeed good that memory safe languages can protect new
programs against bugs that have plagued C and C++ programs for the last five decades. Yet, in my humble
opinion, these tools only provide a soothing bandaid over an infected wound, they do not solve the underly-
ing problem. Software breaks because the developers do not comprehend their code. In theory there would
be no bugs, if programmers foresaw the full consequences of their code. Of course, that is unrealistic under
the best of circumstances, but in modern development environments it is down right hopeless. More
sophisticated languages and tools can in some ways alleviate the pain, but in other subtle ways, they
increase it.

Beyond the usual programming books, the classicAdvanced Programming in the UNIX Environment
is a good resource for Illumos, whileThe Linux Programming Interfaceis a more suitable alternative on
Linux. Of course both of these books talk about deep system programming using syscalls and what not, if
you are interested in game, web, or just plain graphical programming, you should look elsewhere. There is
a plethora of other programming resources from O’Reilly and other publishers, and as always the internet is
overflowing with more or less useless information on this, and any other, subject.

- 76 -

Linus Torvalds - the benevolent Linux dictator

6.8. Kernel

Linux Illumos
name src name src comment
include 693,562 sys 1,085,706 headers
kernel 265,345 os 176,025 kernel facilities
crypto 82,252 crypto 38,108 cryptographic support
security 71,219 various security features
drivers 14,661,237 io 2,670,504 device drivers
fs 1,050,708 fs 446,160 filesystems
net 881,146 inet 242,837 network
arch 1,763,560 arch 692,998 architecture dependent code
misc 2,966,019 misc 139,716 miscellany
sum 7,773,811 sum 2,821,550 sum without drivers
all 22,435,048 all 5,492,054 sum with drivers

The numbers for the Illumos kernel is fairly similar to FreeBSD (except that a lot of driver related
stuff is included in the Illumos header files), while the Linux kernel is to-three times bigger or more in
every category. There isn’t really any good resources for these kernels, primarily because they are just too
complex. Many operating system courses useThe Design and Implementation of The FreeBSD Operating
Systemin its curriculum, and this is probably the best indirect reference book for the Linux and Solaris
kernels.

- 77 -

7. Concluding thoughts

EVERYTHING IS TERRIBLE
- Michael W. Lucas

What conclusions can we draw from our study? As stated in the introduction, simplicity and perfec-
tion can go too far. A system void of features and practical value is worthless, however ‘‘perfect’’ the code
otherwise may be. Finding wisdom, as always, is a question of finding balance. I do not have sufficient
insight to give any definitive answer as to where the line between simplicity and functionality should go.
And, really, this study has been little more then putting some specific numbers on the complexity of
UNIX-like operating systems.

That said, we must not confuse greater quantity for greater quality, or material progress with greater
understanding. Although computers have gained materially in many ways, I would argue that the overall
understanding and wisdom when it comes to computer science has declined the past 50 years. Though few
people used computers in the 70’s, those that did wrote their own compilers, today it’s impressive when an
average user can locate his or her own files without needing tech support. And who can blame them, even
the developers don’t understand what they are developing. A good example to illustrate this modern phe-
nomena is the aforementioned classic text book,The UNIX Programming Environment.This book was
published in 1984, and I have yet to see any book about operating systems that can match its clear insights.
It’s not the book that’s startling, but the operating system that allowed such a book to be written.

Why have computer science stagnated in the midst of tremendous technological innovations? The
answer is simple. You cannot truly advance a system you don’t comprehend. No human, past or present,
can study 20 million lines of programming code in any meaningful way. If operating systems are to be
understood, and thus be a vehicle for real progress, for the individual as well as for society, they would
have to be smaller then our current popular choices by orders of magnitude. No doubt popular distros and
apps will continue to grow more features in the years to come, but will they really advance human knowl-
edge? Whereas most of the ancient materials of the Greek culture is eroded away, only scraps of ruins and
museum objects left, parts of their culture had lasting benefits for humanity. The works of Pythagoras and
Euclid are taught in mathematical classes today, and probably will be taught a 1000 years hence.

But the internet, which we so love and worship today, will be less then dust by then. However, com-
puter science has the potential to benefit humanity in lasting ways. The UNIX authors did uncover some
axioms about system design, that will prove true for all time (whether future generations has wisdom
enough to heed them, is an altogether different question). And I believe other insights could also be gained,
if we can manage to look beyond the tip of our collective noses. The authors of UNIX did not mean for
their system to be the end of computer science, but a beginning. And I don’t think UNIX offers the only
paradigm worth pursuing. The Lisp machines from the 80’s for instance, offered an interesting ‘‘top-
down’’ development model, as opposed to the ‘‘bottom-up’’ approach of UNIX. The old UNIX system can
naturally be improved, but it is rare to see wisdom in the numerous attempt at doing so. Plan 9 did advance
this fine foundation. And recently, SerenityOS has also made a very promising rewrite. Hopefully, such
progress will not go totally unnoticed.

Today though, the ability to study deeply an operating system that you can actually use, is largely
lost, and with it, much of the force in computer science. Can it be revived? Sure. In fact, good initiatives
already exist. But simplicity is hard, and true progress follows a narrow road. The fact that modern tech-
nology has made us conceited and comfortable, does not make it any easier. To quote Albert Einstein:Man
like every other animal is by nature indolent. If nothing spurs him on, then he will hardly think, and will
behave from habit like an automation.Perhaps that is why UNIX produced such glorious minds, not only
did it have the sufficient simplicity, but also the right amount of annoyance?

- 78 -

APPENDIX A

Collecting the Statistics

The following sections describe the nitty gritty details of how the statistics in this article were col-
lected. If some of the numbers have been doctored, or if they are mere guesswork, it shall all be revealed
here. And yes, simplicity takes precedence over accuracy in my methods. A good example is source code
counts; In most cases I have taken the number straight from the summary ofcloc (a good alternative to
this program is sloccount). cloc does however include many files in the count that aren’t actually
programming code, such as PO translation files, HTML documentation, and subtle errors incloc itself
means that the counts aren’t always 100% correct. I have chosen to ignore such issues and leave the
numbers as is. The statistic is accurate enough to be informative, and though some applications may have
numbers that give an inflated impression of their code complexity (eg. many KDE applications), it
nevertheless gives a fair estimate of overall development effort, including to some degree, documentation.
Another issue I have chosen to side step is dependencies. Deceptively simple programming code can rely
on a huge array of dependencies, but I do not have the resources to go down that rabbit hole. This is only a
casual study, and I trust mistakes have been made, but feel free to duplicate and verify my findings.

Note: Tabs are written as \t in order to make them visible.

1. ANCIENT UNIX

The early UNIX systems prior to V5 have largely been lost, but recently the V1 kernel source was
recovered. Together with surviving V2 userland it is possible to create a bootable system. For simplicity
this system is referred to as ‘‘V1’’ in this document, but in actuality it is a weird V1/V2 jerry rigged hybrid.
V9 and V10 of Research UNIX was finally released to the public only a few years ago. There are gaps in
the sources however (especially for V9), and it is not currently possible to use V10 practically in an emula-
tor. You can run V9, but it is slightly cumbersome. These editions have never actually been distributed in
a complete and installable form, they were more ‘‘conceptual’’ then real releases. As for the commercial
System III and V releases, it is possible to get their sources on the internet and run them in emulators, but
the legality of doing so is highly suspect. Hopefully these ancient proprietary systems will be opensourced
in the future. SIMH emulators were used to run the other ancient systems discussed in this article, the
PDP11 emulator for V1, V5, V6 and V7, and the VAX780 emulator for V8 and the BSD’s.

Note: commands such asdu and ps report size in blocks of 512 bytes, divide this by 2 to get size
in kilobytes. Traditionally this was the filesystem block size on UNIX, but 4BSD doubled this to 1
kilobyte blocks, which more then doubled filesystem performance. Since then the filesystem block size has
steadily increased on UNIX systems, but classic utilities will sometimes use the traditional 512 byte
‘‘blocks’’ non the less (although newer systems largely use the more intuitive 1 Kb ‘‘blocks’’).

man

sh # for BSD, to switch from csh
for man in ‘ls /usr/man/man[1-8]‘; do # for V8 use man[1-9w]

man ‘echo $man | sed ’s/\(.*\)\.\(.*\)/\2 \1/’‘ | sed ’/^$/d’ | wc -l
done | awk ’{ sum += $1 } END { print sum }’

Explanation:This command will count non-empty lines of text in all manpages, divide this by 55 and you
have approximately the number of manual pages. Runningman n program will display at least one
full page of text, but most of the manpages in these early days were only a few lines long, so the line count
will include mostly empty lines. To avoid this problem the empty lines are pruned off withsed
’/^$/d’ before the lines are counted. Of course this too is slightly inaccurate, but less so.

For V6 the number is just an educated guess based on how much diskspace the manuals require (˜2.7
pages/Kb). For V5 and V1 the manuals can be obtained as a PDF, but as mentioned above most of these
pages are just whitespace, so the number given is just a rough estimation of the page count if whitespace
was removed. As for V10 manpages see Linux/BSD instructions for hints on how to count them.

bin

- 79 -

ls -l /bin /usr/bin /etc | grep ’rw[xs]’ | wc -l # for V5/V6 just wc
for BSD:
ls -l ‘echo $PATH | sed -e ’s/\.//’ -e ’s/:/ /g’‘ | grep ’rw[xs]’ | wc -l
for V1:
ls /bin >TEMP; wc TEMP; rm TEMP
ls -l etc # manually count the [ls]xrwr- files

The V10 number is the files/directories incmd, dk/cmd , games, ipc/bin , ipc/internet ,
ipc/perf , ipc/servers , in /usr/src and /usr/jerq/src .

files

du -a / | wc -l # for V5/V6 just wc
for V1:
check

The number of files in the V10 source code can be counted on the host, but this number is obviously
lower then what it would be on a real system (maybe about 2/3 of the files on a real system, and even less
for V9). As for 4.1 BSD the system I used did not include source code for user applications, and V5 did not
include any source code or even manuals, so the numbers given are only partial.

conf

ls -l /etc | grep rw- | wc -l # for V5/V6 just wc
for V1:
ls -l /etc # manually count the s-rwr- files

pss, mem

ps alx

Explanation:Calculating these numbers automatically is problematic, since a command such asps alx
| wc -l and ps alx | awk ’{ sum += $10 } END { print sum }’ on V7 would spawn
3 additional processes and gobble up 36 extra kilobytes of memory, a surprisingly big deal back in the day.
Therefor the best way to get fair statistics is just to analyze the output ofps alx manually. For V5 and
V6 the memory usage can be found in column 6, for V8 column 2. For V7 use the SZ column and for the
BSD’s use the RSS column (size / 2 = Kb). As for V1, it has no program for checking memory usage.

src

V7 (the double loop is necessary because of memory constraints)
cd /usr/src
for dir in * /usr/sys /usr/include; do

for file in ‘du -a $dir | awk ’/.[chsy]$/ { print $2 }’‘; do
sed -e ’/^[\t]*$/d’ -e ’/^[\t]**/d’ $file | wc -l

done | awk ’{ sum += $1 } END { print sum }’
done | awk ’{ sum += $1 } END { print sum }’

V8
for file in ‘du -a /usr/sys /usr/src /usr/include | \

awk ’/.[chsy]$/ { print $2 }’‘; do
sed -e ’/^[\t]*$/d’ -e ’/^[\t]**/d’ $file | wc -l

done | awk ’{ sum += $1 } END { print sum }’

BSD 4.1, 4.3 (kernel and headers only)
sed -e ’/^[\t]*$/d’ -e ’/^[\t]**/d’ \
‘du -a /sys /usr/include | awk ’/.[chsy]$/ { print $2 }’‘ | wc -l

The source code for V6, BSD 4.3 and V10, have all been obtained and counted outside of these sys-
tems. You can easily get these files with a quick Google search, and analyze the code with tools such as
cloc or sloccount . The source code for V5 and V1 are educated guesses based on the disk size of
/usr/source and /usr/sys (size * 40 lines/Kb).

- 80 -

hdd

du -s / # (size / 2 = Kb)
for V1:
check

2. INFERNO

These instructions assumes you are running hosted Inferno on a Plan 9 system (although running it
from Linux shouldn’t require any changes), and that you have the following custom commands available in
your Inferno environment:

fn lsprefix{ du -a | grep -i ’\.’$1’$’ | awk ’{ print $2 }’ }
fn sloc{ sed -e ’/^[\t]*$/d’ -e ’/^[\t]*#/d’ -e ’/^[\t\/]**/d’ $* | wc -l }
fn awk{

if { ~ $#* 1 } { file = /fd/0 } { file = $2 }
os -d $emuroot^‘{pwd} awk $1 $file

}

man

cd /man
for man in ‘{ls [0-9]*} {

man ‘{echo $man | sed ’s/\// /’} | wc -l} |
awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages.

bin

ls /dis/* | wc -l

files

du -a / | wc -l

conf

Inferno has very few configuration files, and no/etc equivalent. Exactly what constitute essential
system configuration files is a question of definition. But at the very least a sysadmin needs to maintain
these three files:

/lib/ndb/local main network configuration
/lib/wmsetup system/desktop startup configuration
$home/lib/plumbing plumber configuration

pss

ls /prog | wc -l

src

for dir in /appl /include /lib* /limbo /module /os /utils {
cd $dir; for src in ‘{lsprefix [bchmsy]} { sloc $src } } |
awk ’{ sum += $1 } END { print sum }’

Side note about source code: code from/include , /lib* , /limbo , /os and /utils are used
to build the system. The Limbo code for the Inferno applications are in/appl and /module .

mem

wm/task

hdd

- 81 -

echo ‘{du -s / | sed ’s/ .*//’} / 1024 | calc

3. Plan9Port

Plan9Port not an operating system, but a collection of Plan 9 applications ported to UNIX. The
instructions assume you are running these applications on a Slackware Linux system, but the basic
approach should be the same for any UNIX host.

man

9 rc
cd $PLAN9/man
awk ’{ sum += $1 } END { print sum }’ <{

for(man in man*/*.[1-9]*){
man ‘{echo $man | sed ’s/.+/(.+).(.+)/2 1/’}}}

Divide this by 55 and you have approximately the number of manual pages.

bin

ls $PLAN9/bin | wc -l

files

du -a $PLAN9 | wc -l

conf

Like Plan 9, there are only a few configuration files for Plan9Port. A sysadmin needs to maintain at
least three files:

$PLAN9/ndb/local main network configuration
$HOME/lib/profile user startup configuration
$HOME/lib/plumbing plumber configuration

pss

9 rc
/bin/ps -ely | awk ’/rio|9term|devdraw|acme|9pserve|rc$/

{ print }’ | wc -l

Explanation:The idea here is to start up a basic Plan9Port desktop environment, and measure the
number of Plan9Port processes only, excluding the other processes running on the host. What constitutes a
‘‘basic Plan9Port desktop’’ is quite arbitrary of course. I have tested a rio desktop running an acme editor
with a win rc shell, and a 9term running a rc shell. It may also be noted that these programs have
significant host dependencies, such as X, which are not included in the count.

src

cloc $PLAN9 # install cloc on the host

mem

9 rc
/bin/ps -ely | awk ’/rio|9term|devdraw|acme|9pserve|rc$/

{ sum += $8 } END { print sum/1024, "Mb" }’ | wc -l

See above explanation in the pss section.

hdd

/bin/du -hs $PLAN9

- 82 -

4. Plan 9

In the following instructions I use these custom commands to simplify some of the examples:

fn lsprefix{ du -a | grep -i ’\.’$1’$’ | awk ’{ print $2 }’ }
fn sloc{ sed -e ’/^[\t]*$/d’ -e ’/^[\t]*#/d’ -e ’/^[\t\/]**/d’ $* | wc -l }

man

cd /sys/man
awk ’{ sum += $1 } END { print sum }’ <{

for(man in ‘{ls [0-9]*}) {man ‘{echo $man | sed ’s/\// /’} | wc -l}}

Divide this by 55 and you have approximately the number of manual pages.

bin

ls /bin/* | wc -l

files

du -a /root | wc -l

conf

Plan 9 has few configuration files, and no/etc equivalent. Exactly which files can be considered
as essential system configuration is a question of definition. But at the very least a sysadmin needs to
maintain these five files:

plan9.ini boot configuration
/lib/ndb/local main network configuration
$home/lib/profile user startup configuration
$home/lib/plumbing plumber configuration
$home/bin/rc/riostart desktop startup configuration

pss

ls /proc | grep -v trace | wc -l

src

cd /sys/src
awk ’{ sum += $1 } END { print sum }’ <{

for(src in ‘{lsprefix [chsy]}) sloc $src}

pkg

9fs 9front
ls /n/extra
9fs 9contrib
ls /n/contrib
9fs 9pio
ls /n/9pio/extra
ls /n/9pio/sources

These commands are for 9front, the 9pio repositories are the old Bell Labs sources, many of which
will no longer compile. Exactly how many ‘‘packages’’ these resources holds is a question of definition.

As for 9legacy, the old method9fs sources no longer work since the Bell Labs server is down.
You can add these lines to/bin/9fs to get the 9pio and 9front repositories mentioned above. Beware
though that 9legacy and 9front are slightly incompatible systems, so many of these packages will not
compile.

- 83 -

case 9pio
srv -nq tcp!9p.io 9pio && mount -nC /srv/9pio /n/9pio

case 9front
9fs 9front.org
for(i in 9front extra fqa hardware iso lists pkg sites)

bind /n/9front.org/$i /n/$i
case 9contrib

9fs contrib.9front.org
for(i in contrib sources)

bind /n/contrib.9front.org/$i /n/$i

mem

memory

The numbers used here are a bit doctored. The fileserver in Plan 9 (fossil in 9legacy and cwfs64 or
hjfs in 9front) uses a sizable chunk of memory as a cache. However this filesystem cache is usually idle, so
after running memory I ranps | grep <FILESYSTEM> and subtracted this cache from the results.

Statistics for memory usage is posted in/dev/swap , but this info is not exactly user friendly.
9front comes with a script calledmemory that translates these numbers. 9legacy does not have this script,
but it is simple enough to implement it:

#!/bin/rc
awk ’
function human(name, n) {

printf "%-15s", name
if(n >= 1000000000) printf "%.3g GB\n", n / 1073741824
else if(n >= 1000000) printf "%.3g MB\n", n / 1048576
else if(n >= 1000) printf "%.3g KB\n", n / 1024
else printf "%d B\n", n

}
$2 == "memory" { human("total", $1) }
$2 == "pagesize" { pagesize = $1 }
$2 == "kernel" && NF == 2 { human("total kernel", $1 * pagesize) }
$2 == "user" {

split($1, a, "/")
human("total user", a[2] * pagesize)
print ""; human("used user", a[1] * pagesize)

}
$2 == "kernel" && $3 == "malloc" { split($1, a, "/"); human("used kernel", a[1]) }
$2 == "kernel" && $3 == "draw" { split($1, a, "/"); human("used draw", a[1]) }

’ < /dev/swap

hdd

du -hs /root
alternatively for hjfs on 9front:
echo df >> /srv/hjfs.cmd

5. Minoca

bin

ls $(echo $PATH | sed ’s/:/ /g’) | wc -l

files

opkg update; opkg install du
du -a / | wc -l

conf

- 84 -

du -a /etc | wc -l

pss

ps

src

You can download the Minoca sources from github and analyze it on your host system withcloc
or a similar tool. PS: Although the ‘‘latest’’ Minoca image has been analyzed here, the operating system
hasn’t actually changed at all the last five years, as far as I can see.

pkg

opkg update
grep Source /var/opkg-lists/main | wc -l

mem

Memory statistics is displayed on top of the screen

hdd

Check the filesize of the downloaded Minoca image

6. SerenityOS

man

wc -l /usr/share/man/man*/*.md

Divide this by 55 and you have approximately the number of manual pages.

bin

ls /bin | wc -l

files

du -a / | wc -l # as root

conf

du -a /etc | wc -l # as root

src

du -a /usr/src | cut -f 2 |
xargs egrep -v ’^[\/]*($|//|*[\/]|*$)’ | wc -l

We use cut and egrep here since SerenityOS do not includesed or awk by default. The result
in not entirely accurate; Serenity does not include the sources of the shell Userland Utilities (a mere
oversight perhaps?), which would add some additional 20,000 lines to this count.

pkg

ls Ports | wc -l # from the host

mem

SystemMonitor

hdd

df -h

- 85 -

7. Haiku

man

makewhatis /boot/system/documentation/man
cd /boot/system/documentation/man
for man in $(ls man[1-8]); do

man $(echo $man | sed ’s/\(.*\)\.\(.*\)/\2 \1/’) | wc -l
done | awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages.

bin

for dir in $(echo $PATH | sed -e ’s/^..//’ -e ’s/:/ /g’); do
ls $dir

done | wc -l

files

du -a /boot /dev | wc -l

conf

du -a /boot/system/settings | wc -l

pss

ps | wc -l

src

You can get the sources by runninggit clone https://github.com/haiku/haiku ,
and analyze it with a program likecloc (It’s probably easiest to do this in a different operating system).

pkg

HaikuDepot

mem

ActivityMonitor

hdd

It’s surprisingly hard to measure this accurately in Haiku, since there are symlinks all over the place,
whichdf anddu are’nt smart enough to realize. In the end I randu -h haiku.qcow2 on the host.

8. Minix

man

for dir in /usr/man /usr/X11R7/man; do
cd $dir
for man in $(ls man[1-9]); do

man $(echo $man | sed ’s/\(.*\)\.\(.*\)/\2 \1/’) | wc -l
done

done | awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages.

bin

for dir in $(echo $PATH | sed ’s/:/ /g’); do
ls $dir

done | wc -l

files

- 86 -

du -a / | wc -l

conf

du -a /etc | wc -l

pss

ps ax | wc -l

src

You can get the sources by runninggit clone https://github.com/Stichting-
MINIX-Research-Foundation/minix , and analyze it with a program likecloc (It’s probably
easiest to do this in a different operating system). I recommend downloading the latest development
snapshot of Minix, and not the stable release. Actually, nothing new has happened in Minix the last five
years, and the project seems to be dormant, if not dead.

pkg

pkgin update
pkgin available | wc -l

mem

ps alx | awk ’NR > 1 { sum += $8 } END { print sum/1024, "Mb"}’

hdd

df -h

9. OpenBSD

man

for dir in /usr/share/man /usr/X11R6/man; do
cd $dir
for man in $(ls man[1-9]); do

man $(echo $man | sed ’s/\(.*\)\.\(.*\)/\2 \1/’) | wc -l
done

done | awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages.

bin

for dir in $(echo $PATH | sed ’s/:/ /g’); do
ls $dir

done | wc -l

files

du -a / | wc -l # as root

conf

du -a /etc | wc -l # as root

pss

ps ax | wc -l

Wait a few minutes for the kernel to relink before running this.

src

- 87 -

cd /tmp
for pkg in src sys ports xenocara; do

choose a mirror close to you
ftp https://ftp.eu.openbsd.org/pub/OpenBSD/7.1/$pkg.tar.gz

done
cd /usr
mkdir xenocara
tar xzf /tmp/ports.tar.gz
cd src
tar xzf /tmp/src.tar.gz
tar xzf /tmp/sys.tar.gz
cd ../xenocara
tar xzf /tmp/xenocara.tar.gz
pkg_add cloc
cloc /usr/src /usr/xenocara /usr/ports

pkg

ls /usr/ports/[a-z]* | wc -l

mem

ps alx | awk ’NR > 1 { sum += $8 } END { print sum/1024, "Mb"}’

Wait a few minutes for the kernel to relink before running this.

hdd

df -h

kernel

I have divided the kernel source into these somewhat arbitrary categories:

boot stand
sys sys
kern kern, lib/libkern
ddb ddb
compat -
crypto crypto
security -
dev dev
fs *fs, uvm
net net*
misc conf, lib(-libkern), scsi
arch arch

10. NetBSD

man

for dir in /usr/share/man /usr/X11R7/man; do
cd $dir
for man in $(ls man[1-9]); do

man $(echo $man | sed ’s/\(.*\)\.\(.*\)/\2 \1/’) | wc -l
done

done | awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages.

bin

- 88 -

as root
for dir in $(echo $PATH | sed ’s/:/ /g’); do

ls $dir
done | wc -l

files

du -a / | wc -l # as root

conf

du -a /etc | wc -l # as root

pss

ps ax | wc -l

src

cd /tmp
for pkg in gnusrc sharesrc src syssrc xsrc; do

choose a mirror close to you
ftp http://ftp.fr.netbsd.org/pub/NetBSD/NetBSD-9.3/source/sets/$pkg.tgz

done
cd /
tar xzf /tmp/*.tgz
pkgin cloc
cloc /usr/src /usr/xsrc

pkg

ls /usr/pkgsrc/[a-z]* | wc -l

mem

ps alx | awk ’NR > 1 { sum += $8 } END { print sum/1024, "Mb"}’

hdd

df -h

kernel

I have divided the kernel source into these somewhat arbitrary categories:

boot stand
sys sys
kern kern, lib/libkern
ddb ddb, gdbscripts
compat compat
crypto crypto, opencrypto
security secmodel
dev dev, external/bsd/drm*, modules
fs *fs, uvm
net net*
misc altq, coda, conf, dist, external(-bsd/drm*), lib(-libkern), rump
arch arch

11. DragonFly BSD

man

- 89 -

sh # to switch from csh
cd /usr/share/man
for man in $(ls man[1-9]); do

man $(echo $man | sed ’s/\([^.]*\)\.\([^.]*\)\..*/\2 \1/’) | wc -l
done | awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages.

bin

sh # to switch from csh
for dir in $(echo $PATH | sed ’s/:/ /g’); do

ls $dir
done | wc -l

files

du -a / | wc -l # as root

conf

du -a /etc | wc -l # as root

pss

ps ax | wc -l

src

cd /usr
make src-create # as root
pkg install cloc
cloc /usr/src

pkg

cd /usr
make dports-create-shallow # as root
ls /usr/dports/[a-z]* | wc -l

mem

ps alx | awk ’NR > 1 { sum += $8 } END { print sum/1024, "Mb"}’

hdd

df -h

kernel

I have divided the kernel source into these somewhat arbitrary categories:

boot platform/vkernel64
sys sys
kern kern, libkern
ddb ddb
compat -
crypto crypto, opencrypto
security -
dev dev, contrib/dev
fs vfs, vm
net net*
misc bus, compile, conf*, contrib(-dev), gnu, libiconv, libprop, tools
arch cpu, platform/pc64

- 90 -

12. FreeBSD

man

for dir in /usr/share/man /usr/share/openssl/man; do
cd $dir
for man in $(ls man[1-9]); do

man $(echo $man |\
sed ’s/\([^.]*\)\.\([^.]*\)\..*/\2 \1/’) | wc -l

done
done | awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages. A couple of manpages
will complain that you need to installgroff to render them, but doing so doesn’t really alter the result.

bin

for dir in $(echo $PATH | sed ’s/:/ /g’); do
ls $dir

done | wc -l

files

du -a / | wc -l # as root

conf

du -a /etc | wc -l # as root

pss

ps ax | wc -l

src

pkg install cloc
cloc /usr/src

pkg

ls /usr/ports/[a-z]* | wc -l

mem

ps alx | awk ’NR > 1 { sum += $8 } END { print sum/1024, "Mb"}’

hdd

df -h

kernel

I have divided the kernel source into these somewhat arbitrary categories:

boot cddl/boot
sys sys
kern kern, libkern
ddb ddb, gdb, tests, cddl/dev
compat compat, cddl(-boot, dev)
crypto crypto, opencrypto
security security
dev dev, contrib/dev, modules
fs fs, nfs*, ufs, geom, vm, contrib/openzfs
net net*, nlm, rpc
misc bsm, cam, conf, contrib(-dev, openzfs), dts, gnu, isa

kgssapi, ofed, teken, tools, xdr, xen
arch amd64, arm*, i386, mips, powerpc, riscv, x86

- 91 -

13. OpenIndiana and OmniOSce

man

for OpenIndiana, rebuild whatis db first
for dir in $(find /usr -type d -name man); do

MANPATH=$MANPATH:$dir
done
export MANPATH
man -w

for dir in $(find /usr -type d -name man); do
cd $dir
for man in $(ls man[1-9]*); do

man $(echo $man | sed ’s/\(.*\)\.\(.*\)/\2 \1/’) | wc -l
done

done | awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages.

bin

for dir in $(echo $PATH | sed ’s/:/ /g’); do
ls $dir

done | wc -l

files

du -a / | wc -l # as root

conf

du -a /etc | wc -l # as root

pss

ps -ely | wc -l

src

Getting and counting the full source code is a bit tricky. What I have done here is cloned the
illumos-gate repository withgit , which contains the kernel and core userland of Illumos, then runcloc
on it. This has to be done on a different operating system since OpenIndiana and OmniOS do not have
cloc in their repositories.

In addition to these sources, most Illumos distributions also bundle their own extra packages, which
have not been included in the count. For some, such as OmniOS, these extras are quite small, but for oth-
ers, such as OpenIndiana, these extras are huge (just adding Firefox and all its dependencies alone will
likely multiply the source code ten fold).

pkg

for OpenIndiana
firefox http://pkg.openindiana.org/hipster
firefox http://pkg.openindiana.org/hipster-encumbered
firefox http://sfe.opencsw.org/localhostoih

for OmniOSce
firefox https://pkg.omniosce.org/r151042/core
firefox https://pkg.omniosce.org/r151042/extra
firefox http://sfe.opencsw.org/localhostomnios

mem

prstat -t

hdd

- 92 -

df -h

kernel

I have divided the kernel source into these somewhat arbitrary categories: The kernel source can be
found in the /usr/src/uts category of the illumos-gate repository. Everything here exceptcommon
is added to thearch category. And everything in thecommondirectory is added to themisc category,
with the following exceptions:

sys sys
os os, syscall
crypto crypto
io io
fs *fs, vm
net *net*, smb*, rpc*

14. Linux

man

for Debian
cd /usr/share/man
for man in $(ls man[1-8]); do

man $(echo $man |\
sed ’s/\([^.]*\)\.\([^.]*\)\..*/\2 \1/’) | wc -l

done | awk ’{ sum += $1 } END { print sum }’

for openSUSE and Slackware
for AlmaLinux just drop /usr/local/man here
for dir in /usr/share/man /usr/local/man; do

cd $dir
for man in $(ls man[1-9]*); do

man $(echo $man |\
sed ’s/\([^.]*\)\.\([^.]*\)\..*/\2 \1/’) | wc -l

done
done | awk ’{ sum += $1 } END { print sum }’

Divide this by 55 and you have approximately the number of manual pages.

Tiny Core and Alpine does not include any manpages by default, but you can manually retrieve the
manpages for BusyBox, FLTK,flwm , aterm , wbar (tinyX and fltk_projects do not have manpages), the
individual packages that make up the Tiny Core distribution, and ‘‘The Linux man-pages project’’, which
documents the Linux kernel. But there is little point in doing so. From a practical point of view, it is far
better to just read ‘‘The CoreBook’’ provided by the Tiny Core team. Besides, from a statistical point of
view, just counting the Linux kernel man-pages and ignoring the rest will be accurate enough. It’s much
the same story for Alpine; the distro just glues BusyBox and musl around the Linux kernel, there is little
else.

bin

for dir in $(echo $PATH | sed ’s/:/ /g’); do
ls $dir

done | wc -l # as root for openSUSE and Slackware

for Debian
for dir in /sbin /usr/sbin $(echo $PATH | sed ’s/:/ /g’); do

ls $dir
done | wc -l

files

- 93 -

du -a / | wc -l # as root

conf

du -a /etc | wc -l # as root

pss

ps -ely | wc -l
ps | wc -l # for Tiny Core and Alpine

src

Most Linux distributions makes it easy to inspect the source for individual packages, but to get the
entire source code for the install distribution is not that easy. For Slackware you can download the source
from one of its many FTP mirrors, and then extract all the archives:

lftp -c ’open ftp://ftpmirror.infania.net/slackware;\
mirror -c -e slackware64-15.0/source’
see: https://mirrors.slackware.com/mirrorlist
find . -name *.t*z -execdir tar xf ’{}’ ’;’
find . -name *.t*bz2 -execdir tar xjf ’{}’ ’;’

You can now inspect the code withcloc . (these sources arehugeand you will likely need to
analyze them in stages) These figures should correspond fairly well to a generally fleshed out Linux
desktop, or any fleshed out UNIX desktop for that matter.

It is also possible to get the Red Hat sources that AlmaLinux is based on, and analyze them in much
the same way:

wget -r --no-parent https://cdn-ubi.redhat.com/content/public/\
ubi/dist/ubi9/9/x86_64/baseos/source/SRPMS/Packages/a
mv cdn-ubi.redhat.com/content/public/ubi/dist/ubi9/9/x86_64/\
baseos/source/SRPM/Packages Packages
rm -rf cdn-ubi.redhat.com
cd Packages
for dir in [a-z]; do

cd $dir
for rpm in *.rpm; do

rpm2cpio $rpm | cpio -idmv
done
cd ..

done
find . -name *.t*z -execdir tar xf ’{}’ ’;’
find . -name *.t*bz2 -execdir tar xjf ’{}’ ’;’

Again, the code base here is very large, so you will likely need to analyze it in chunks. Note also that
this only copies the BaseOS repository of Red Hat. Typically a Red Hat installation will contain a great
number of packages from the AppStream repository as well.

For Tiny Core and Alpine, you can download the source code for the individual packages that make
up these distributions, and analyze them (see the above comments in the man section). Although, just
counting the lines of code in the Linux kernel and ignoring the rest, will be accurate enough.

pkg

- 94 -

apt-cache search . | wc -l # for Debian
yum list available | wc -l # for AlmaLinux
zypper packages | wc -l # for openSUSE
tce-ab # for Tiny Core (search for ".")
vi /etc/apk/repositories # for Alpine
apk update # (uncomment community repo first)

for Slackware, as root
wget https://github.com/sbopkg/sbopkg/releases/download/0.38.1/\

sbopkg-0.38.1-noarch-1_wss.tgz
installpkg sbopkg-0.38.1-noarch-1_wss.tgz
sbopkg # sync
ls /var/lib/sbopkg/SBo/15.0/[a-z]* | grep asc | wc -l

mem

free -m

hdd

df -h

kernel

The source for the categoriesinclude , kernel , crypto , security , drivers , fs , net and
arch , can be found in those directories. Everything else I have added to themisc category. Note that the
kernel and misc categories are slightly misleading, as the Linux kernel has moved some of the
traditional kernel facilities outside of the main kernel directory source.

- 95 -

APPENDIX B

Echo source code

You can endlessly debate the pros and cons of different operating systems, but at the end of the day
it’s the actual code that tells the story. In this appendix we will list the source code for theecho
command on various systems. Its a good candidate since it’s a very simple program with a clearly defined
purpose, the code should reflect this.

1. UNIX V6

main(argc, argv)
int argc;
char *argv[];
{

int i;

argc--;
for(i=1; i<=argc; i++)

printf("%s%c", argv[i], i==argc? ’\n’: ’ ’);
}

2. UNIX V7, 4.1 and 4.3 BSD

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];
{

register int i, nflg;

nflg = 0;
if(argc > 1 && argv[1][0] == ’-’ && argv[1][1] == ’n’) {

nflg++;
argc--;
argv++;

}
for(i=1; i<argc; i++) {

fputs(argv[i], stdout);
if (i < argc-1)

putchar(’ ’);
}
if(nflg == 0)

putchar(’\n’);
exit(0);

}

- 96 -

3. UNIX V8 and V10

V10 adds the special character ’v’, taking up 3 extra lines of code, but is otherwise exactly the same.

#include <stdio.h>

main(argc, argv)
char **argv;
{

register char *cp;
register int i, wd;
int j;
int nflg = 0;
int escflg = 0;

while (argc > 1) {
if (strcmp(argv[1], "-n")==0) {

nflg++;
argc--;
argv++;

} else if (strcmp(argv[1], "-e")==0) {
escflg++;
argc--;
argv++;

} else if (strcmp(argv[1], "-ne")==0 ||
strcmp(argv[1], "-en")==0) {

escflg++;
nflg++;
argc--;
argv++;
break;

} else
break;

}
for (i = 1; i < argc; i++) {

for (cp = argv[i]; *cp; cp++) {
if (*cp == ’\\’ && escflg)
switch (*++cp) {

case ’b’:
putchar(’\b’);
continue;

case ’c’
return 0;

case ’f’
putchar(’\f’);
continue;

case ’n’
putchar(’\n’);
continue;

case ’r’
putchar(’\r’);
continue;

case ’t’
putchar(’\t’);
continue;

case ’\\’
putchar(’\\’);
continue;

- 97 -

case ’0’: case ’1’: case ’2’: case ’3’:
case ’4’: case ’5’: case ’6’: case ’7’:

wd = *cp&07;
j = 0;
while (*++cp>=’0’ && *cp<=’7’ && ++j<3){

wd <<= 3;
wd |= (*cp - ’0’);

}
putchar(wd);
--cp;
continue;

default:
cp--;

}
putchar(*cp);

}
if (i < arg-1)

putchar(’ ’);
}
if (!nflg)

putchar(’\n’);
return 0;

}

- 98 -

4. Plan 9

#include <u.h>
#include <libc.h>

void
main(int argc, char *argv[])
{

int nflag;
int i, len;
char *buf, *p;

nflag = 0;
if(argc > 1 && strcmp(argv[1], "-n") == 0)

nflag = 1;

len = 1;
for(i = 1+nflag; i < argc; i++)

len += strlen(argv[i])+1;

buf = malloc(len);
if(buf == 0)

exits("no memory");

p = buf;
for(i = 1+nflag; i < argc; i++){

strcpy(p, argv[i]);
p += strlen(p);
if(i < argc-1)

*p++ = ’ ’;
}

if(!nflag)
*p++ = ’\n’;

if(write(1, buf, p-buf) < 0){
fprint(2, "echo: write error: %r\n");
exits("write error");

}

exits((char *)0);
}

- 99 -

5. Inferno

implement Echo;

include "sys.m";
sys: Sys;

include "draw.m";

Echo: module
{

init: fn(nil: ref Draw->Context, nil: list of string);
};

init(nil: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;
if(args != nil)

args = tl args;
addnl := 1;
if(args != nil && (hd args == "-n" || hd args == "--")) {

if(hd args == "-n")
addnl = 0;

args = tl args;
}
s := "";
if(args != nil) {

s = hd args;
while((args = tl args) != nil)

s += " " + hd args;
}
if(addnl)

s[len s] = ’\n’;
a := array of byte s;
if(sys->write(sys->fildes(1), a, len a) < 0){

sys->fprint(sys->fildes(2), "echo: write error: %r\n");
raise "fail:write error";

}
}

- 100 -

6. Minoca

Comments in the Minoca source code are extremely verbose, they are not included here.

#include <minoca/lib/types.h>

#include <stdio.h>
#include <string.h>

BOOL
EchoIsStringBackslashEscaped (

PSTR String
);

INT
EchoMain (

INT ArgumentCount,
CHAR **Arguments
)

{

PSTR Argument;
ULONG ArgumentIndex;
ULONG ArgumentLength;
CHAR Character;
ULONG CharacterIndex;
CHAR DigitCount;
BOOL EscapeProcessing;
BOOL PrintTrailingNewline;
CHAR Value;
BOOL WasBackslash;

EscapeProcessing = FALSE;
PrintTrailingNewline = TRUE;

for (ArgumentIndex = 1; ArgumentIndex < ArgumentCount; ArgumentIndex += 1) {
Argument = Arguments[ArgumentIndex];
if (Argument[0] != ’-’) {

break;
}

while (TRUE) {
Argument += 1;
if (Argument[0] == ’\0’) {

break;

} else if (Argument[0] == ’e’) {
EscapeProcessing = TRUE;

} else if (Argument[0] == ’E’) {
EscapeProcessing = FALSE;

} else if (Argument[0] == ’n’) {
PrintTrailingNewline = FALSE;

} else {
break;

}

- 101 -

}

if (Argument[0] != ’\0’) {
break;

}
}

while (ArgumentIndex < ArgumentCount) {
Argument = Arguments[ArgumentIndex];
ArgumentIndex += 1;

if ((EscapeProcessing == FALSE) ||
(EchoIsStringBackslashEscaped(Argument) == FALSE)) {

printf("%s", Argument);

} else {
Value = 0;
DigitCount = 0;
WasBackslash = FALSE;
ArgumentLength = strlen(Argument);
for (CharacterIndex = 0;

CharacterIndex < ArgumentLength;
CharacterIndex += 1) {

Character = Argument[CharacterIndex];

if (DigitCount != 0) {
if ((Character >= ’0’) && (Character <= ’7’)) {

Value = (Value * 8) + (Character - ’0’);
DigitCount += 1;
if (DigitCount == 4) {

DigitCount = 0;
printf("%c", Value);

}

continue;

} else {
DigitCount = 0;
printf("%c", Value);

}
}

if (WasBackslash != FALSE) {
if (Character == ’a’) {

} else if (Character == ’b’) {
printf("\b");

} else if (Character == ’c’) {
PrintTrailingNewline = FALSE;
goto MainEnd;

} else if (Character == ’f’) {
printf("\f");

} else if (Character == ’n’) {
printf("\n");

- 102 -

} else if (Character == ’r’) {
printf("\r");

} else if (Character == ’t’) {
printf("\t");

} else if (Character == ’\\’) {
printf("\\");

} else if (Character == ’0’) {
Value = 0;
DigitCount = 1;

} else {

printf("\\%c", Character);
}

} else if (Character != ’\\’) {
printf("%c", Character);

}

if (Character == ’\\’) {
WasBackslash = !WasBackslash;

} else {
WasBackslash = FALSE;

}
}

}

if (ArgumentIndex != ArgumentCount) {
printf(" ");

}
}

MainEnd:
if (PrintTrailingNewline != FALSE) {

printf("\n");
}

return 0;
}

BOOL
EchoIsStringBackslashEscaped {

PSTR String
}

{

if (strchr(String, ’\\’) != NULL) {
return TRUE;

}

return FALSE;
}

- 103 -

7. SerenityOS

#include <AK/CharacterTypes.h>
#include <AK/GenericLexer.h>
#include <LibCore/ArgsParser.h>
#include <LibCore/System.h>
#include <LibMain/Main.h>
#include <stdio.h>
#include <unistd.h>

static u8 parse_octal_number(GenericLexer& lexer)
{

u32 value = 0;
for (size_t count = 0; count < 3; ++count) {

auto c = lexer.peek();
if (!(c >= ’0’ && c <= ’7’))

break;
value = value * 8 + (c - ’0’);
lexer.consume();

}
clamp(value, 0, 255);
return value;

}

static Optional<u8> parse_hex_number(GenericLexer& lexer)
{

u8 value = 0;
for (size_t count = 0; count < 2; ++count) {

auto c = lexer.peek();
if (!is_ascii_hex_digit(c))

return {};
value = value * 16 + parse_ascii_hex_digit(c);
lexer.consume();

}
return value;

}

static String interpret_backslash_escapes(StringView string, bool& no_trailing_newline)
{

static constexpr auto escape_map = "a\ab\be\ef\fn\nr\rt\tv\v"sv;
static constexpr auto unescaped_chars = "\a\b\e\f\n\r\t\v\\"sv;

StringBuilder builder;
GenericLexer lexer { string };

while (!lexer.is_eof()) {
auto this_index = lexer.tell();
auto this_char = lexer.consume();
if (this_char == ’\\’) {

if (lexer.is_eof()) {
builder.append(’\\’);
break;

}
auto next_char = lexer.peek();
if (next_char == ’c’) {

no_trailing_newline = true;
break;

}
if (next_char == ’0’) {

- 104 -

lexer.consume();
auto octal_number = parse_octal_number(lexer);
builder.append(octal_number);

} else if (next_char == ’x’) {
lexer.consume();
auto maybe_hex_number = parse_hex_number(lexer);
if (!maybe_hex_number.has_value()) {

auto bad_substring = string.substring_view(this_index, lexer.tell() \
- this_index);
builder.append(bad_substring);

} else {
builder.append(maybe_hex_number.release_value());

}
} else if (next_char == ’u’) {

lexer.retreat();
auto maybe_code_point = lexer.consume_escaped_code_point();
if (maybe_code_point.is_error()) {

auto bad_substring = string.substring_view(this_index, lexer.tell() \
- this_index);
builder.append(bad_substring);

} else {
builder.append_code_point(maybe_code_point.release_value());

}
} else {

lexer.retreat();
auto consumed_char = lexer.consume_escaped_character(’\\’, escape_map);
if (!unescaped_chars.contains(consumed_char))

builder.append(’\\’);
builder.append(consumed_char);

}
} else {

builder.append(this_char);
}

}

return builder.build();
}

ErrorOr<int> serenity_main(Main::Arguments arguments)
{

TRY(Core::System::pledge("stdio"));

Vector<String> text;
bool no_trailing_newline = false;
bool should_interpret_backslash_escapes = false;

Core::ArgsParser args_parser;
args_parser.add_option(no_trailing_newline, "Do not output a trailing newline", \
nullptr, ’n’);
args_parser.add_option(should_interpret_backslash_escapes, \
"Interpret backslash escapes", nullptr, ’e’);
args_parser.add_positional_argument(text, "Text to print out", "text", \
Core::ArgsParser::Required::No);
args_parser.set_stop_on_first_non_option(true);
args_parser.parse(arguments);

if (text.is_empty()) {
if (!no_trailing_newline)

outln();

- 105 -

return 0;
}

auto output = String::join(’ ’, text);
if (should_interpret_backslash_escapes)

output = interpret_backslash_escapes(output, no_trailing_newline);
out("{}", output);
if (!no_trailing_newline)

outln();
return 0;

}

- 106 -

8. OpenBSD

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <err.h>

/* ARGSUSED */
int
main(int argc, char *argv[])
{

int nflag;

if (pledge("stdio", NULL) == -1)
err(1, "pledge");

/* This utility may NOT do getopt(3) option parsing. */
if (*++argv && !strcmp(*argv, "-n")) {

++argv;
nflag = 1;

}
else

nflag = 0;

while (*argv) {
(void)fputs(*argv, stdout);
if (*++argv)

putchar(’ ’);
}
if (!nflag)

putchar(’\n’);

return 0;
}

- 107 -

9. NetBSD and Minix

#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* ARGSUSED */
int
main(int argc, char *argv[])
{

int nflag;

setprogname(argv[0]);
(void)setlocale(LC_ALL, "");

/* This utility may NOT do getopt(3) option parsing. */
if (*++argv && !strcmp(*argv, "-n")) {

++argv;
nflag = 1;

}
else

nflag = 0;

while (*argv) {
(void)printf("%s", *argv);
if (*++argv)

(void)putchar(’ ’);
}
if (nflag == 0)

(void)putchar(’\n’);
fflush(stdout);
if (ferror(stdout))

exit(1);
exit(0);
/* NOTREACHED */

}

- 108 -

10. FreeBSD and DragonFly BSD

#include <sys/types.h>
#include <sys/uio.h>

#include <assert.h>
#include <capsicum_helpers.h>
#include <err.h>
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

/*
* Report an error and exit.
* Use it instead of err(3) to avoid linking-in stdio.
*/

static __dead2 void
errexit(const char *prog, const char *reason)
{

char *errstr = strerror(errno);
write(STDERR_FILENO, prog, strlen(prog));
write(STDERR_FILENO, ": ", 2);
write(STDERR_FILENO, reason, strlen(reason));
write(STDERR_FILENO, ": ", 2);
write(STDERR_FILENO, errstr, strlen(errstr));
write(STDERR_FILENO, "\n", 1);
exit(1);

}

int
main(int argc, char *argv[])
{

int nflag; /* if not set, output a trailing newline. */
int veclen; /* number of writev arguments. */
struct iovec *iov, *vp; /* Elements to write, current element. */
char space[] = " ";
char newline[] = "\n";
char *progname = argv[0];

if (caph_limit_stdio() < 0 || caph_enter() < 0)
err(1, "capsicum");

/* This utility may NOT do getopt(3) option parsing. */
if (*++argv && !strcmp(*argv, "-n")) {

++argv;
--argc;
nflag = 1;

} else
nflag = 0;

veclen = (argc >= 2) ? (argc - 2) * 2 + 1 : 0;

if ((vp = iov = malloc((veclen + 1) * sizeof(struct iovec))) == NULL)
errexit(progname, "malloc");

while (argv[0] != NULL) {
size_t len;

- 109 -

len = strlen(argv[0]);

/*
* If the next argument is NULL then this is this
* the last argument, therefore we need to check
* for a trailing \c.
*/

if (argv[1] == NULL) {
/* is there room for a ’\c’ and is there one? */
if (len >= 2 &&

argv[0][len - 2] == ’\\’ &&
argv[0][len - 1] == ’c’) {

/* chop it and set the no-newline flag. */
len -= 2;
nflag = 1;

}
}
vp->iov_base = *argv;
vp++->iov_len = len;
if (*++argv) {

vp->iov_base = space;
vp++->iov_len = 1;

}
}
if (!nflag) {

veclen++;
vp->iov_base = newline;
vp++->iov_len = 1;

}
/* assert(veclen == (vp - iov)); */
while (veclen) {

int nwrite;

nwrite = (veclen > IOV_MAX) ? IOV_MAX : veclen;
if (writev(STDOUT_FILENO, iov, nwrite) == -1)

errexit(progname, "write");
iov += nwrite;
veclen -= nwrite;

}
return 0;

}

- 110 -

11. Illumos (ei. Solaris)

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>
#include <string.h>
#include <locale.h>

int
main(int argc, char *argv[])
{

register char *cp;
register int i, wd;
int j;
wchar_t wc;
int b_len;
char *ep;

(void) setlocale(LC_ALL, "");

if (--argc == 0) {
(void) putchar(’\n’);
if (fflush(stdout) != 0)

return (1);
return (0);

}

for (i = 1; i <= argc; i++) {
for (cp = argv[i], ep = cp + (int)strlen(cp);

cp < ep; cp += b_len) {
if ((b_len = mbtowc(&wc, cp, MB_CUR_MAX)) <= 0) {

(void) putchar(*cp);
b_len = 1;
continue;

}

if (wc != ’\\’) {
(void) putwchar(wc);
continue;

}

cp += b_len;
b_len = 1;
switch (*cp) {

case ’a’: /* alert - XCU4 */
(void) putchar(’\a’);
continue;

case ’b’:
(void) putchar(’\b’);
continue;

case ’c’:
if (fflush(stdout) != 0)

return (1);
return (0);

case ’f’:

- 111 -

(void) putchar(’\f’);
continue;

case ’n’:
(void) putchar(’\n’);
continue;

case ’r’:
(void) putchar(’\r’);
continue;

case ’t’:
(void) putchar(’\t’);
continue;

case ’v’:
(void) putchar(’\v’);
continue;

case ’\\’:
(void) putchar(’\\’);
continue;

case ’0’:
j = wd = 0;
while ((*++cp >= ’0’ && *cp <= ’7’) &&

j++ < 3) {
wd <<= 3;
wd |= (*cp - ’0’);

}
(void) putchar(wd);
--cp;
continue;

default:
cp--;
(void) putchar(*cp);

}
}
(void) putchar(i == argc? ’\n’: ’ ’);
if (fflush(stdout) != 0)

return (1);
}
return (0);

}

- 112 -

12. GNU (Linux and Haiku)

#include <config.h>
#include <stdio.h>
#include <assert.h>
#include <sys/types.h>
#include "system.h"

/* The official name of this program (e.g., no ’g’ prefix). */
#define PROGRAM_NAME "echo"

#define AUTHORS \
proper_name ("Brian Fox"), \
proper_name ("Chet Ramey")

/* If true, interpret backslash escapes by default. */
#ifndef DEFAULT_ECHO_TO_XPG
enum { DEFAULT_ECHO_TO_XPG = false };
#endif

void
usage (int status)
{

/* STATUS should always be EXIT_SUCCESS (unlike in most other
utilities which would call emit_try_help otherwise). */

assert (status == EXIT_SUCCESS);

printf (_("\
Usage: %s [SHORT-OPTION]... [STRING]...\n\

or: %s LONG-OPTION\n\
"), program_name, program_name);

fputs (_("Echo the STRING(s) to standard output.\n\
\n\

-n do not output the trailing newline\n\
"), stdout);

fputs (_(DEFAULT_ECHO_TO_XPG
? N_("\

-e enable interpretation of backslash escapes (default)\n\
-E disable interpretation of backslash escapes\n")

: N_("\
-e enable interpretation of backslash escapes\n\
-E disable interpretation of backslash escapes (default)\n")),

stdout);
fputs (HELP_OPTION_DESCRIPTION, stdout);
fputs (VERSION_OPTION_DESCRIPTION, stdout);
fputs (_("\

\n\
If -e is in effect, the following sequences are recognized:\n\
"), stdout);

fputs (_("\
\\\\ backslash\n\
\\a alert (BEL)\n\
\\b backspace\n\
\\c produce no further output\n\
\\e escape\n\
\\f form feed\n\
\\n new line\n\
\\r carriage return\n\
\\t horizontal tab\n\

- 113 -

\\v vertical tab\n\
"), stdout);

fputs (_("\
\\0NNN byte with octal value NNN (1 to 3 digits)\n\
\\xHH byte with hexadecimal value HH (1 to 2 digits)\n\

"), stdout);
printf (USAGE_BUILTIN_WARNING, PROGRAM_NAME);
emit_ancillary_info (PROGRAM_NAME);
exit (status);

}

/* Convert C from hexadecimal character to integer. */
static int
hextobin (unsigned char c)
{

switch (c)
{
default: return c - ’0’;
case ’a’: case ’A’: return 10;
case ’b’: case ’B’: return 11;
case ’c’: case ’C’: return 12;
case ’d’: case ’D’: return 13;
case ’e’: case ’E’: return 14;
case ’f’: case ’F’: return 15;
}

}

/* Print the words in LIST to standard output. If the first word is
’-n’, then don’t print a trailing newline. We also support the
echo syntax from Version 9 unix systems. */

int
main (int argc, char **argv)
{

bool display_return = true;
bool posixly_correct = getenv ("POSIXLY_CORRECT");
bool allow_options =

(! posixly_correct
|| (! DEFAULT_ECHO_TO_XPG && 1 < argc && STREQ (argv[1], "-n")));

/* System V machines already have a /bin/sh with a v9 behavior.
Use the identical behavior for these machines so that the
existing system shell scripts won’t barf. */

bool do_v9 = DEFAULT_ECHO_TO_XPG;

initialize_main (&argc, &argv);
set_program_name (argv[0]);
setlocale (LC_ALL, "");
bindtextdomain (PACKAGE, LOCALEDIR);
textdomain (PACKAGE);

atexit (close_stdout);

/* We directly parse options, rather than use parse_long_options, in
order to avoid accepting abbreviations. */

if (allow_options && argc == 2)
{

if (STREQ (argv[1], "--help"))
usage (EXIT_SUCCESS);

- 114 -

if (STREQ (argv[1], "--version"))
{

version_etc (stdout, PROGRAM_NAME, PACKAGE_NAME, Version, AUTHORS,
(char *) NULL);

return EXIT_SUCCESS;
}

}

--argc;
++argv;

if (allow_options)
while (argc > 0 && *argv[0] == ’-’)

{
char const *temp = argv[0] + 1;
size_t i;

/* If it appears that we are handling options, then make sure that
all of the options specified are actually valid. Otherwise, the
string should just be echoed. */

for (i = 0; temp[i]; i++)
switch (temp[i])

{
case ’e’: case ’E’: case ’n’:

break;
default:

goto just_echo;
}

if (i == 0)
goto just_echo;

/* All of the options in TEMP are valid options to ECHO.
Handle them. */

while (*temp)
switch (*temp++)

{
case ’e’:

do_v9 = true;
break;

case ’E’:
do_v9 = false;
break;

case ’n’:
display_return = false;
break;

}

argc--;
argv++;

}

just_echo:

if (do_v9 || posixly_correct)
{

- 115 -

while (argc > 0)
{

char const *s = argv[0];
unsigned char c;

while ((c = *s++))
{

if (c == ’\\’ && *s)
{

switch (c = *s++)
{
case ’a’: c = ’\a’; break;
case ’b’: c = ’\b’; break;
case ’c’: return EXIT_SUCCESS;
case ’e’: c = ’\x1B’; break;
case ’f’: c = ’\f’; break;
case ’n’: c = ’\n’; break;
case ’r’: c = ’\r’; break;
case ’t’: c = ’\t’; break;
case ’v’: c = ’\v’; break;
case ’x’:

{
unsigned char ch = *s;
if (! isxdigit (ch))

goto not_an_escape;
s++;
c = hextobin (ch);
ch = *s;
if (isxdigit (ch))

{
s++;
c = c * 16 + hextobin (ch);

}
}
break;

case ’0’:
c = 0;
if (! (’0’ <= *s && *s <= ’7’))

break;
c = *s++;
FALLTHROUGH;

case ’1’: case ’2’: case ’3’:
case ’4’: case ’5’: case ’6’: case ’7’:

c -= ’0’;
if (’0’ <= *s && *s <= ’7’)

c = c * 8 + (*s++ - ’0’);
if (’0’ <= *s && *s <= ’7’)

c = c * 8 + (*s++ - ’0’);
break;

case ’\\’: break;

not_an_escape:
default: putchar (’\\’); break;
}

}
putchar (c);

}
argc--;
argv++;

- 116 -

if (argc > 0)
putchar (’ ’);

}
}

else
{

while (argc > 0)
{

fputs (argv[0], stdout);
argc--;
argv++;
if (argc > 0)

putchar (’ ’);
}

}

if (display_return)
putchar (’\n’);

return EXIT_SUCCESS;
}

- 117 -

13. BusyBox (alternative to GNU on Linux)

int echo_main(int argc, char **argv)
{

struct iovec io[argc];
struct iovec *cur_io = io;
char *arg;
char *p;

#if !ENABLE_FEATURE_FANCY_ECHO
enum {

eflag = ’\\’,
nflag = 1, /* 1 -- print ’\n’ */

};
arg = *++argv;
if (!arg)

goto newline_ret;
#else

char nflag = 1;
char eflag = 0;

while (1) {
arg = *++argv;
if (!arg)

goto newline_ret;
if (*arg != ’-’)

break;

/* If it appears that we are handling options, then make sure
* that all of the options specified are actually valid.
* Otherwise, the string should just be echoed.
*/

p = arg + 1;
if (!*p) /* A single ’-’, so echo it. */

goto just_echo;

do {
if (!strchr("neE", *p))

goto just_echo;
} while (*++p);

/* All of the options in this arg are valid, so handle them. */
p = arg + 1;
do {

if (*p == ’n’)
nflag = 0;

if (*p == ’e’)
eflag = ’\\’;

} while (*++p);
}

just_echo:
#endif

while (1) {
/* arg is already == *argv and isn’t NULL */
int c;

cur_io->iov_base = p = arg;

if (!eflag) {

- 118 -

/* optimization for very common case */
p += strlen(arg);

} else while ((c = *arg++)) {
if (c == eflag) {

/* This is an "\x" sequence */

if (*arg == ’c’) {
/* "\c" means cancel newline and

* ignore all subsequent chars. */
cur_io->iov_len = p - (char*)cur_io->iov_base;
cur_io++;
goto ret;

}
/* Since SUSv3 mandates a first digit of 0, 4-digit octals
* of the form \0### are accepted. */
if (*arg == ’0’ && (unsigned char)(arg[1] - ’0’) < 8) {

arg++;
}
/* bb_process_escape_sequence can handle nul correctly */
c = bb_process_escape_sequence((void*) &arg);

}
*p++ = c;

}

arg = *++argv;
if (arg)

*p++ = ’ ’;
cur_io->iov_len = p - (char*)cur_io->iov_base;
cur_io++;
if (!arg)

break;
}

newline_ret:
if (nflag) {

cur_io->iov_base = (char*)"\n";
cur_io->iov_len = 1;
cur_io++;

}
ret:

/* TODO: implement and use full_writev? */
return writev(1, io, (cur_io - io)) >= 0;

}
#endif

