
A Troff Tutorial

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

is a text-formatting program for typesetters and laser printers. Such devices normally provide
multiple fonts, and a substantial number of mathematical symbols and other special characters.
Characters can be printed in a range of sizes, and placed anywhere on the page.

allows the user full control over fonts, sizes, and character positions, as well as the usual fea-
tures of a formatter� right-margin justification, automatic hyphenation, page titling and num-
bering, and so on. It also provides macros, arithmetic variables and operations, and conditional
testing, for complicated formatting tasks.

This document is an introduction to the most basic use of It presents just enough information
to enable the user to do simple formatting tasks like making viewgraphs, and to make incremen-
tal changes to existing packages of commands.

1. Introduction
is a text-formatting program, written by J. F. Ossanna,
for producing high-quality printed output from photo-
typesetters and laser printers. This document is an
example of output.

The single most important rule of using is not to
use it directly, but through some intermediary. In
many ways, resembles an assembly language� a
remarkably powerful and flexible one� but nonethe-
less such that many operations must be specified at a
level of detail and in a form that is too hard for most
people to use effectively.

For some special applications, there are programs
that provide an interface to for the majority of users.
For example,reference(latest eqn) provides an easy
to learn language for typesetting mathematics; the
user need know no whatsoever to typeset mathemat-
ics. reference(latest tbl) provides the same conve-
nience for producing tables.

For producing straight text (which may well con-
tain mathematics or tables), there are a number of
‘‘macro packages’’ that define formatting rules and
operations for specific styles of documents, and
reduce the amount of direct contact with In particular,
the -ms , -mpm and -mm packages for Bell Labs

 This is a version ofreference(troff tutorial v7man) revised
by B. W. Kernighan.

internal memoranda and external papers provide most
of the facilities needed for a wide range of document
preparation. (This paper was prepared with-mpm.)
There are also packages for viewgraphs, various jour-
nals, and other special applications. Typically you
will find these packages easier to use than once you
get beyond the most trivial operations; you should
always consider them first.

In the few cases where existing packages don’t do
the whole job, the solution isnot to write an entirely
new set of instructions from scratch, but to make
small changes to adapt packages that already exist.

In accordance with this philosophy of letting
someone else do the work, the part of described here
is only a small part of the whole, although it tries to
concentrate on the more useful parts. In any case,
there is no attempt to be complete. Rather, the
emphasis is on showing how to do simple things, and
how to make incremental changes to what already
exists. The contents of the remaining sections are:

2. Point sizes; line spacing
3. Fonts and special characters
4. Indents and line lengths
5. Tabs
6. Local motions: drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

- 2 -

10. Number registers and arithmetic
11. Macros with arguments
12. Conditionals
13. Environments
14. Diversions

Appendix A: Character set
To use you have to prepare not only the actual text

you want printed, but some information that tellshow
you want it printed. For the text and the formatting
information are often intertwined quite intimately.
Most commands to are placed on a line separate from
the text itself, beginning with a period (one command
per line). For example,

Some text.
.ps 14
Some more text.

will change the ‘point size’, that is, the size of the let-
ters being printed, to ‘14 point’ (one point is 1/72
inch) like this:

Some text. Some more text.
Occasionally, though, something special occurs in

the middle of a line � to produce

Area =πr 2

you have to type

Area = \(*p\fIr\fR\|\s8\u2\d\s0

(which we will explain shortly). The backslash char-
acter \ is used to introduce commands and special
characters within a line of text.

2. Point Sizes; Line Spacing
As mentioned above, the command.ps sets the

point size. One point is 1/72 inch, so 6-point charac-
ters are at most 1/12 inch high, and 36-point charac-
ters are ½ inch. Different devices provide different
sets of sizes; a representative set is shown below.

6 point: Pack my box with five dozen liquor jugs.
7 point: Pack my box with five dozen liquor jugs.
8 point: Pack my box with five dozen liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pack my box with five dozen liquor
11 point: Pack my box with five dozen
12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point18 point20 point

22 24 28 36

If the number after.ps is not a legal size, it is
rounded up to the next valid value. If no number fol-
lows .ps , reverts to the previous size, whatever it
was. begins with point size 10, which is usually fine.
This document is printed in 10 point.

The point size can also be changed in the middle
of a line or even a word with the in-line command\s .
To produce

UNIX ran on aPDP-11/45

type

\s8UNIX\s10 ran on a \s8PDP-\s1011/45

As above,\s should be followed by a legal point size,
except that\s0 causes the size to revert to its previ-
ous value. Notice that\s1011 can be understood
correctly as ‘size 10, followed by an 11’, if the size is
legal, but not otherwise. Be cautious with similar
constructions.

Relative size changes are also legal and useful:

\s-2UNIX\s+2

temporarily decreases the size, whatever it is, by two
points, then restores it, producingUNIX . Relative size
changes have the advantage that the size difference is
independent of the starting size of the document. The
amount of the relative change is restricted to a single
digit.

The other parameter that determines what the type
looks like is the spacing between lines, which is set
independently of the point size. Vertical spacing is
measured from the bottom of one line to the bottom of
the next. The command to control vertical spacing is
.vs . For running text, it is usually best to set the ver-
tical spacing about 20% bigger than the character size.
For example, so far in this document, we have used
‘‘10 on 12’’, that is,

.ps 10

.vs 12p

If we changed to

.ps 10

.vs 10p

the running text would look like this. After a few
lines, you will agree it looks a little cramped. The
right vertical spacing is partly a matter of taste,
depending on how much text you want to squeeze into
a given space, and partly a matter of traditional print-
ing style. By default, uses 10 on 12.

Point size and vertical spacing make a
substantial difference in the amount of text
per square inch. This is 12 on 14.

Point size and vertical spacing make a substantial difference in the amount of text
per square inch. For example, 10 on 12 uses about twice as much space as 7 on 8. This is
6 on 7, which is even smaller. It packs a lot more words per line, but you can go blind try-
ing to read it.

- 3 -

When used without arguments,.ps and .vs
revert to the previous size and vertical spacing respec-
tively.

The command.sp is used to get extra vertical
space. Unadorned, it gives you one extra blank line
(one .vs , whatever that has been set to). Typically,
that’s more or less than you want, so.sp can be fol-
lowed by information about how much space you
want �

.sp 2i

means ‘two inches of vertical space’.

.sp 2p

means ‘two points of vertical space’; and

.sp 2

means ‘two vertical spaces’� two of whatever.vs
is set to (this can also be made explicit with
.sp 2v); also understands decimal fractions in most
places, so

.sp 1.5i

is a space of 1.5 inches. These same scale factors can
be used after.vs to define line spacing, and in fact
after most commands that deal with physical dimen-
sions.

It should be noted that all size numbers are con-
verted internally to ‘machine units’, which are much
smaller, reflecting the finer resolution of particular
output devices. Many laser printers run at 300
units/inch; typesetters are often more than 1000
units/inch.

3. Fonts and Special Characters
allows many different fonts at any one time. Nor-

mally a family of serif fonts (Times roman, italic and
bold), a family of san-serif fonts (Helvetica), and a
collection of special characters are available.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

A representative collection of greek, mathematical
symbols and miscellaneous other characters are listed

in Appendix A. Appendix B shows the font families
commonly available on Postscript printers; your
mileage may vary.

prints in roman unless told otherwise. To switch
into bold, use the.ft command

.ft B

and for italics,

.ft I

To return to roman, use.ft R ; to return to the previ-
ous font, whatever it was, use either.ft P or just
.ft . The ‘underline’ command

.ul

causes the next input line to print in italics..ul can
be followed by a count to indicate that more than one
line is to be italicized.

Fonts can also be changed within a line or word
with the in-line command\f :

boldfacetext

is produced by

\fBbold\fIface\fR text

If you want to do this so the previous font, whatever it
was, is left undisturbed, insert extra\fP commands,
like this:

\fBbold\fP\fIface\fP\fR text\fP

Because only the immediately previous font is
remembered, you have to restore the previous font
after each change or you can lose it. The same is true
of .ps and.vs when used without an argument.

There are many other fonts available besides the
standard set. Normally you can just use a font by
naming it, but if an entire document is to be printed in
a non-standard set of fonts, it is best to mount the
fonts explicitly. This tells which fonts you will make
the most use of. The.fp command

.fp 3 PB

says that the Palatino Bold font(which looks like
this) is mounted on position 3.

It is possible to make a document relatively inde-
pendent of the actual fonts used to print it by using
font numbers instead of names; for example,\f3 and
.ft 3 mean ‘whatever font is mounted at position
3’, and thus work for any setting. The standard macro
packages assume that fonts 1 through 4 contain
roman, italic, bold, and bold italic members of a fam-
ily.

There is also a way to get synthetic bold fonts by
overstriking letters with a slight offset, with the.bd
command; it is illustrated in Section 11.

- 4 -

Special characters have four-character names
beginning with \(; they may be inserted anywhere.
For example,

¼ + ½ = ¾

is produced by

\(14 + \(12 = \(34

In particular, greek letters are all of the form\(* �,
where- is an upper or lower case roman letter remi-
niscent of the greek. Thus to get

Σ(α×β) � �

in bare we have to type

\(*S(\(*a\(mu\(*b) \(−> \(if

That line is unscrambled as follows:

\(*S Σ
((
\(*a α
\(mu ×
\(*b β
))
\(−> �

\(if �

Appendix A contains a sample of special names.
In the same effect can be achieved with the input

SIGMA (alpha times beta) �> inf

which is less concise, but clearer to the uninitiated.
Notice that each four-character name is a single

character as far as is concerned� the ‘translate’ com-
mand

.tr \(mi\(em

is perfectly clear, meaning

.tr −�

that is, to translate − into �.
Some characters are automatically translated into

others: grave ` and acute ´ accents (apostrophes)
become open and close single quotes ‘ ’; the combi-
nation of ‘‘...’’ is generally preferable to the double
quotes "...". Similarly a typed minus sign becomes a
hyphen -. To print an explicit� sign, use\- . To
print a backslash, use\e .

4. Indents and Line Lengths
starts with a line length of 6.5 inches, too wide for

8½×11 paper. To reset the line length, use the.ll
command:

.ll 6i

As with .sp , the actual length can be specified in
several ways; inches are probably the most intuitive.

Output is normally positioned an inch from the left
edge of the paper. To reset the default physical left
margin (‘‘page offset’’), use the.po command.

.po 0

sets the offset as far to the left as it will go.
The indent command.in causes the left margin

to be indented by some specified amount from the
page offset. If we use.in to move the left margin in,
and .ll to move the right margin to the left, we can
make offset blocks of text:

.in 0.3i

.ll −0.3i
text to be set into a block
.ll +0.3i
.in −0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur nomen
tuum; adveniat regnum tuum; fiat voluntas tua,
sicut in caelo, et in terra. ... Amen.

Notice the use of ‘+’ and ‘−’ to specify the amount of
change. These change the previous setting by the
specified amount, rather than just overriding it. The
distinction is quite important:.ll +1i makes lines
one inch longer;.ll 1i makes them one inchlong.

With .in , .ll and .po , the previous value is
used if no argument is specified.

To indent a single line, use the ‘temporary indent’
command.ti . For example, all paragraphs in this
memo effectively begin with the command

.ti 3

Three of what? The default unit for.ti , as for most
horizontally oriented commands (.ll , .in , .po), is
ems; an em is roughly the width of the letter ‘m’ in
the current point size. (Precisely, a em in sizep is p
points.) Although inches are usually clearer than ems
to people who don’t set type for a living, ems have a
place: they are a measure of size that is proportional to
the current point size. If you want to make text that
keeps its proportions regardless of point size, you
should use ems for all dimensions. Ems can be speci-
fied as scale factors directly, as in.ti 2.5m .

Lines can also be indented negatively if the indent
is already positive:

.ti −0.3i

causes the next line to be moved back three tenths of
an inch. Thus to make a decorative initial capital, we
indent the whole paragraph, then move the letter ‘P’
back with a.ti command:

- 5 -

P
ater noster qui est in caelis sanctifice-
tur nomen tuum; adveniat regnum
tuum; fiat voluntas tua, sicut in caelo,

et in terra. ... Amen.
Of course, there is also some trickery to make the ‘P’
bigger (just a\s36P\s0), and to move it down from
its normal position (see the section on local motions).

5. Tabs
Tabs (theASCII ‘horizontal tab’ character) can be

used to produce output in columns, or to set the hori-
zontal position of output. Typically tabs are used only
in unfilled text. Tab stops are set by default every
half inch from the current indent, but can be changed
by the .ta command. To set stops every inch, for
example,

.ta 1i 2i 3i 4i 5i 6i

By default the stops are left-justified (as on a type-
writer), but there are also centering and right-adjusting
tabs.

For a handful of numeric columns, use right-
adjusting tabs:

.nf

.ta .5iR 1iR 1.5iR
tab 1 tab 2 tab 3
tab 40 tab 50 tab 60
tab 700 tab 800 tab 900
.fi

The R means ‘‘right adjust.’’ When printed, this will
produce

1 2 3
40 50 60

700 800 900

If you have many numbers, or if you need more com-
plicated table layout, don’t use directly; use

It is also possible to fill up tabbed-over space with
some character other than blanks by setting the ‘tab
replacement character’ with the.tc command:

.ta 1.5i 2.5i

.tc \(ru (\(ru is " _")
Name tab Age tab

produces

Name___________________ Age ___________

To reset the tab replacement character to a blank, use
.tc with no argument. (Lines can also be drawn
with the\l command, described in Section 6.)

also provides a very general mechanism called
‘fields’ for setting up complicated columns. (This is
used by We will not go into it in this paper.

6. Local Motions: Drawing lines and characters

Remember ‘Area =πr2’ and the big ‘P’ in the
Paternoster. How are they done? provides a host of
commands for placing characters of any size at any
place. You can use them to draw special characters or
to tune your output for a particular appearance. Most
of these commands are straightforward, but messy to
read and tough to type correctly.

If you won’t use subscripts and superscripts are
most easily done with the half-line local motions\u
and \d . To go back up the page half a point-size,
insert a\u at the desired place; to go down, insert a
\d . (\u and \d should always be used in pairs, as
explained below.) Thus

Area = \(*pr\u2\d

produces

Area =πr2

To make the ‘2’ smaller, bracket it with\s �2 and
\s0 . Since\u and\d refer to the current point size,
be sure to put them either both inside or both outside
the size changes, or you will get an unbalanced verti-
cal motion.

Sometimes the space given by\u and\d isn’t the
right amount. The\v command can be used to
request an arbitrary amount of vertical motion. The
in-line command

\v’ amount’

causes motion up or down the page by the amount
specified in ‘amount’. For example, to move the ‘P’
down, we used

.in +0.6i (move paragraph in)

.ll �0.3i (shorten lines)

.ti �0.3i (move P back)
\v’2’\s36P\s0\v’ �2’ater noster qui est
in caelis ...

A minus sign causes upward motion, while no sign or
a plus sign means down the page. Thus\v’ �2’
causes an upward vertical motion of two line spaces.

There are many other ways to specify the amount
of motion �

\v’0.1i’
\v’3p’
\v’ �0.5m’

and so on are all legal. Notice that the scale specifier
i or p or mgoes inside the quotes. Any character can
be used in place of the quotes; this is also true of all
other commands described in this section.

Since does not take within-the-line vertical
motions into account when figuring out where it is on

- 6 -

the page, output lines can have unexpected positions if
the left and right ends aren’t at the same vertical posi-
tion. Thus\v , like \u and\d , should always balance
upward vertical motion in a line with the same amount
in the downward direction.

Arbitrary horizontal motions are also available�
\h is like \v , except that the default scale factor is
ems instead of line spaces. As an example,

\h’ �0.1i’

causes a backwards motion of a tenth of an inch.
Consider printing the mathematical symbol ‘>>’. The
default spacing is a bit too wide, so replaces this by

>\h’ �0.1m’>

to produce >>.
Frequently\h is used with the ‘width function’

\w to generate motions equal to the width of some
character string. The construction

\w’thing’

is a number equal to the width of ‘thing’ in machine
units. All computations are ultimately done in these
units. To move horizontally the width of an ‘x’, we
can say

\h’\w’x’u’

As we mentioned above, the default scale factor for all
horizontal dimensions ism, ems, so here we must have
the u for machine units, or the motion produced will
be far too large. is quite happy with the nested quotes,
by the way, so long as you don’t leave any out.

There are also several special-purpose commands
for local motion. \0 is an unpaddable white space of
the same width as a digit. ‘Unpaddable’ means that it
will never be widened or split across a line by line jus-
tification and filling. There is also\ (blank), which is
an unpaddable character the width of a space,\| ,
which is half that width,\^ , which is one quarter of
the width of a space, and\& , which has zero width.
(This last one is useful, for example, in entering a text
line which would otherwise begin with a ‘.’.)

The command\o , used like

\o’set of characters’

causes (up to 9) characters to be overstruck, centered
on the widest. This is nice for accents, as in

m\o"e\(aa"long\o"e\(ga"ne

which makes

mélongène

The accents are\(ga and \(aa , or \` and \´ ;
remember that each is just one character to

You can make your own overstrikes with another
special convention,\z , the zero-motion command.
\zx suppresses the normal horizontal motion after
printing the single characterx , so another character
can be laid on top of it. Although sizes can be
changed within\o , it centers the characters on the
widest, and there can be no horizontal or vertical
motions, so\z may be the only way to get what you
want:

¡¡¡¡
is produced by

\s8\z\(sq\s14\z\(sq\s22\z\(sq\s36\(sq

The.sp is needed to leave room for the result.
As another example, an extra-heavy semicolon

that looks like

,. instead of ; or;
can be constructed with a big comma and a big period
above it:

\s+6\z,\v’ −0.25m’.\v’0.25m’\s0

‘0.25m’ is an empirical constant.
A more ornate overstrike is given by the bracket-

ing function \b , which piles up characters vertically,
centered on the current baseline. Thus we can get big
brackets, constructing them with piled-up smaller
pieces:






 x 






by typing in only this:

.sp

\b’\(lt\(lk\(lb’ \b’\(lc\(lf’ x \

\b’\(rc\(rf’ \b’\(rt\(rk\(rb’

also provides a convenient facility for drawing
horizontal and vertical lines of arbitrary length with
arbitrary characters.\l’1i’ draws a line one inch
long, like this: _______________ . The length can be
followed by the character to use if the _ isn’t appropri-
ate; \l’0.5i.’ draws a half-inch line of dots:
............... The construction\L is analogous to\l ,
except that it draws a vertical line instead of horizon-
tal.

- 7 -

7. Strings
Obviously if a paper contains a large number of

occurrences of an acute accent over a letter ‘e’, typing
\o"e\´" for each would be a great nuisance.

Fortunately, provides a way in which you can
store an arbitrary collection of text in a ‘string’, and
thereafter use the string name as a shorthand for its
contents. Strings are one of several mechanisms
whose judicious use lets you type a document with
less effort and organize it so that extensive format
changes can be made with few editing changes.

Strings are defined with the command.ds . The
line

.ds e \o"e\’"

defines the stringe to have the value\o"e\´" .
A reference to a string is replaced by whatever text

the string was defined as. String names may be either
one or two characters long, and are referred to by*x
for one character names or*(xy for two character
names. Thus to get téléphone, given the definition of
the string e as above, we can type
t*el*ephone , to produce téléphone.

If a string must begin with blanks, define it as

.ds xx " text

The double quote signals the beginning of the defini-
tion. There is no trailing quote; the end of the line ter-
minates the string.

A string may actually be several lines long; if
encounters a\ at the end ofany line, it is thrown
away and the next line added to the current one. So
you can make a long string simply by ending each line
but the last with a backslash:

.ds xx this \
is a very \
long string

Strings may be defined in terms of other strings, or
even in terms of themselves; we will discuss some of
these possibilities later.

8. Introduction to Macros
Before we can go much further in we need to learn

a bit about the macro facility. In its simplest form, a
macro is just a shorthand notation quite similar to a
string. Suppose we want every paragraph to start in
exactly the same way� with a space and a temporary
indent of two ems:

.sp

.ti +2m

Then to save typing, we would like to collapse these
into one shorthand line, a ‘command’ like

.PP

that would be treated by exactly as

.sp

.ti +2m

.PP is called amacro. The way we tell what.PP
means is todefineit with the .de command:

.de PP

.sp

.ti +2m

..

The first line names the macro (we used ‘.PP ’ for
‘paragraph’, and upper case so it wouldn’t conflict
with any name that might already know about). The
last line .. marks the end of the definition. In
between is the text, which is simply inserted whenever
sees the ‘command’ or macro call

.PP

A macro can contain any mixture of text and format-
ting commands.

The definition of.PP has to precede its first use;
undefined macros are simply ignored. Names are
restricted to one or two characters.

Using macros for commonly occurring sequences
of commands is critically important. Not only does it
save typing, but it makes later changes much easier.
Suppose we decide that the paragraph indent is too
small, the vertical space is much too big, and roman
font should be forced. Instead of changing the whole
document, we need only change the definition of.PP
to something like

.de PP \" paragraph macro

.sp 2p

.ti +3m

.ft R

..

and the change takes effect everywhere we used.PP .
\" is a command that causes the rest of the line to

be ignored. We use it here to add comments to the
macro definition (a wise idea once definitions get
complicated).

As another example of macros, consider these two
which start and end a block of offset, unfilled text,
like most of the examples in this paper:

- 8 -

.de BS \" start indented block

.sp

.nf

.in +0.3i

.ft CW \" constant width font

..

.de BE \" end indented block

.sp

.ft 1

.fi

.in −0.3i

..

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

by the commands.BS and.BE , and it will come out
as it did above. Notice that we indented by.in
+0.3i instead of.in 0.3i . This way we can nest
our uses of.BS and.BE to get blocks within blocks.

If later on we decide that the indent should be 0.5i,
then it is only necessary to change the definitions of
.BS and.BE , not the whole paper.

9. Titles, Pages and Numbering
This is an area where things get tougher, because

nothing is done for you automatically. Of necessity,
some of this section is a cookbook, to be copied liter-
ally until you get some experience.

Suppose you want a title at the top of each page,
saying just

left top center top right top

Unfortunately, this requires work.
You have to say what the actual title is (easy);

when to print it (easy enough); and what to do at and
around the title line (harder). Taking these in reverse
order, first we define a macro.NP (for ‘new page’) to
process titles and the like at the end of one page and
the beginning of the next:

.de NP
’bp
’sp 0.5i
.tl ’left top’center top’right top’
’sp 0.3i
..

To make sure we’re at the top of a page, we issue a
‘begin page’ command’bp , which causes a skip to
top-of-page (we’ll explain the’ shortly). Then we
space down half an inch, print the title (the use of.tl
should be self explanatory; later we will discuss
parameterizing the titles), space another 0.3 inches,
and we’re done.

To ask for .NP at the bottom of each page, we
have to say something like ‘when the text is within an
inch of the bottom of the page, start the processing for
a new page.’ This is done with a ‘when’ command
.wh :

.wh �1i NP

(No ‘.’ is used beforeNP; this is simply the name of a
macro, not a macro call.) The minus sign means
‘measure up from the bottom of the page’, so-1i
means ‘one inch from the bottom’.

The .wh command appears in the input outside
the definition of.NP ; typically the input would be

.de NP

...

..

.wh �1i NP

Now what happens? As text is actually being out-
put, keeps track of its vertical position on the page,
and after a line is printed within one inch from the
bottom, the.NP macro is activated. (In the jargon,
the .wh command sets atrap at the specified place,
which is ‘sprung’ when that point is passed.).NP
causes a skip to the top of the next page (that’s what
the ’bp was for), then prints the title with the appro-
priate margins.

Why ’bp and’sp instead of.bp and.sp ? The
answer is that.sp and .bp , like several other com-
mands, cause abreak to take place. That is, all the
input text collected but not yet printed is flushed out
as soon as possible, and the next input line is guaran-
teed to start a new line of output. If we had used.sp
or .bp in the .NP macro, this would cause a break in
the middle of the current output line when a new page
is started. The effect would be to print the left-over
part of that line at the top of the page, followed by the
next input line on a new output line. This isnot what
we want. Using’ instead of. for a command tells
that no break is to take place� the output line cur-
rently being filled shouldnot be forced out before the
space or new page.

The list of commands that cause a break is short
and natural:

.bp .br .ce .fi .nf .sp .in .ti

All others causeno break, regardless of whether you
use a. or a ’ . If you really need a break, add a.br
command at the appropriate place.

One other thing to beware of � if you’re changing
fonts or point sizes a lot, you may find that if you
cross a page boundary in an unexpected font or size,
your titles come out in that size and font instead of
what you intended. Furthermore, the length of a title
is independent of the current line length, so titles will

- 9 -

come out at the default length of 6.5 inches unless you
change it, which is done with the.lt command.

There are several ways to fix the problems of point
sizes and fonts in titles. For the simplest applications,
we can change.NP to set the proper size and font for
the title, then restore the previous values as shown
below.

.de NP
’bp
’sp 0.5i
.ft R \" set title font to roman
.ps 10 \" and size to 10 point
.lt 6i \" and length to 6 inches
.tl ’left’center’right’
.ps \" revert to previous size
.ft P \" and to previous font
’sp 0.3i
..

This version of.NP doesnot work if the fields in
the .tl command contain size or font changes. To
cope with that requires ‘environment’ mechanism,
which we will discuss in Section 13.

To get a footer at the bottom of a page, you can
modify .NP so it does some processing before the
’bp command, or split the job into a footer macro
invoked at the bottom margin and a header macro
invoked at the top of the page. These variations are
left as exercises.

Output page numbers are computed automatically
as each page is produced (starting at 1), but no num-
bers are printed unless you ask for them explicitly. To
get page numbers printed, include the character% in
the .tl line at the position where you want the num-
ber to appear. For example

.tl ’’- % -’’

centers the page number inside hyphens, as on this
page. You can set the page number at any time with
either .bp n , which immediately starts a new page
numberedn, or with .pn n , which sets the page
number for the next page but doesn’t cause a skip to
the new page. Again,.bp +n sets the page number
to n more than its current value;.bp means.bp +1 .

10. Number Registers and Arithmetic
has a facility for doing arithmetic, and for defining

and using variables with numeric values, callednum-
ber registers.Number registers, like strings and mac-
ros, can be useful in setting up a document so it is
easy to change later. And of course they serve for any
sort of arithmetic computation.

Like strings, number registers have one or two
character names. They are set by the.nr command,
and are referenced anywhere by\nx (one character

name) or\n(xy (two character name).
There are quite a few pre-defined number registers

maintained by among them% for the current page
number;nl for the current vertical position on the
page;dy , mo andyr for the current day, month and
year; and.s and .f for the current size and font.
(The font is a number from 1 to typically around 10.)
Any of these can be used in computations like any
other register, but some, like.s and .f , cannot be
changed with.nr .

As an example of the use of number registers, in
the -ms macro package, most significant parameters
are defined in terms of the values of a handful of num-
ber registers. These include the point size for text, the
vertical spacing, and the line and title lengths. To set
the point size and vertical spacing for the following
paragraphs, for example, a user may say

.nr PS 9

.nr VS 11

The paragraph macro.PP is defined (roughly) as fol-
lows:

.de PP

.ps \\n(PS \" reset size

.vs \\n(VSp \" spacing

.ft 1 \" font

.sp 0.5v \" half a line

.ti +3m

..

This sets the font to font 1 and the point size and line
spacing to whatever values are stored in the number
registersPSandVS.

Why are there two backslashes? This is the eter-
nal problem of how to quote a quote. When originally
reads the macro definition, it peels off one backslash
to see what’s coming next. To ensure that another is
left in the definition when the macro isused,we have
to put in two backslashes in the definition. If only one
backslash is used, point size and vertical spacing will
be frozen at the time the macro is defined, not when it
is used.

Protecting by an extra layer of backslashes is only
needed for\n , * , \$ (which we haven’t come to
yet), and\ itself. Things like\s , \f , \h , \v , and so
on do not need an extra backslash, since they are con-
verted by to an internal code immediately upon being
seen.

Arithmetic expressions can appear anywhere that a
number is expected. As a trivial example,

.nr PS \\n(PS �2

decrementsPS by 2. Expressions can use the arith-
metic operators +,�, *, /, % (mod), the relational
operators >, >=, <, <=, =, and != (not equal), and

- 10 -

parentheses.
Although the arithmetic we have done so far has

been straightforward, more complicated things are
somewhat tricky. First, number registers hold only
integers. arithmetic uses truncating integer division,
just like Fortran. Second, in the absence of parenthe-
ses, evaluation is done left-to-right without any opera-
tor precedence (including relational operators). Thus

7* �4+3/13

becomes ‘�1’. Number registers can occur anywhere
in an expression, and so can scale indicators likep, i ,
m, and so on (but no spaces). Although integer divi-
sion causes truncation, each number and its scale indi-
cator is converted to machine units before any arith-
metic is done, so1i/2u evaluates to 0.5i correctly.

The scale indicatoru often has to appear when
you wouldn’t expect it� in particular, when arith-
metic is being done in a context that implies horizon-
tal or vertical dimensions. For example,

.ll 7/2i

would seem obvious enough� 3½ inches. Sorry.
Remember that the default units for horizontal param-
eters like .ll are ems. That’s really ‘7 ems / 2
inches’, and when translated into machine units, it
becomes zero. How about

.ll 7i/2

Sorry, still no good� the ‘2’ is ‘2 ems’, so ‘7i/2’ is
small, although not zero. Youmustuse

.ll 7i/2u

So again, a safe rule is to attach a scale indicator to
every number, even constants.

For arithmetic done within a.nr command, there
is no implication of horizontal or vertical dimension,
so the default units are ‘units’, and7i/2 and7i/2u
mean the same thing. Thus

.nr ll 7i/2

.ll \\n(llu

does just what you want, so long as you don’t forget
theu on the.ll command.

11. Macros with arguments
The next step is to define macros that can change

from one use to the next according to parameters sup-
plied as arguments. To make this work, we need two
things. First, when we define the macro, we have to
indicate that some parts of it will be provided as argu-
ments when the macro is called. Then when the
macro is called we have to provide actual arguments
to be plugged into the definition.

Let us illustrate by defining a macro.SM that will
print its argument two points smaller than the sur-
rounding text. That is, the macro call

.SM UNIX

will produceUNIX instead of UNIX.
The definition of.SM is

.de SM
\s �2\\$1\s+2
..

Within a macro definition, the symbol\\$n refers to
the nth argument that the macro was called with.
Thus \\$1 is the string to be placed in a smaller
point size when.SM is called.

As a slightly more complicated version, the fol-
lowing definition of .SM permits optional second and
third arguments that will be printed in the normal size:

.de SM
\\$3\s �2\\$1\s+2\\$2
..

Arguments not provided when the macro is called are
treated as empty, so

.SM UNIX),

producesUNIX), while

.SM UNIX). (

produces (UNIX). It is convenient to reverse the order
of arguments because trailing punctuation is much
more common than leading.

By the way, the number of arguments that a macro
was called with is available in number register.$.

The following macro.BD is used to make ‘bold
roman’, likelike thisthis phrase.phrase. It combines horizontal
motions, width computations, and argument rear-
rangement.

.de BD
\&\\$3\f1\\$1\h’-\w’\\$1’u+3u’\\$1\fP\\$2
..

The\h and\w commands need no extra backslash, as
we discussed above. The\& is there in case the argu-
ment begins with a period.

Two backslashes are needed with the\\$n com-
mands, though, to protect one of them when the macro
is being defined. Perhaps a second example will
make this clearer. Consider a macro called.NH
which produces numbered headings rather like those
in this paper, with the sections numbered automati-
cally, and the title in bold in a smaller size. The use is

.NH "Section title ..."

(If the argument to a macro is to contain blanks, then

- 11 -

it must be surroundedby double quotes, unlike a
string, where only one leading quote is permitted.)

Here is the definition of the.NH macro:

.nr NH 0 \" initialize section number

.de NH

.sp 0.3i

.ft B

.nr NH \\n(NH+1 \" increment number

.ps \\n(PS �1 \" decrease PS
\\n(NH. \\$1 \" number. title
.ps \\n(PS \" restore PS
.sp 0.3i
.ft R
..

The section number is kept in number registerNH,
which is incremented each time just before it is used.
(A number register, but not a string, may have the
same name as a macro without conflict.)

We used\\n(NH instead of\n(NH and\\n(PS
instead of\n(PS . If we had used\n(NH , we would
get the value of the register at the time the macro was
defined,not at the time it wasused. If that’s what you
want, fine, but not here. Similarly, by using\\n(PS ,
we get the point size at the time the macro is called.

As an example that does not involve numbers,
recall our.NP macro which had a

.tl ’left’center’right’

We could make these into parameters by using instead

.tl ’*(LT’*(CT’*(RT’

so the title comes from three strings calledLT, CTand
RT. If these are empty, then the title will be a blank
line. NormallyCTwould be set with something like

.ds CT - % -

to give just the page number between hyphens, but a
user could supply private definitions for any of the
strings.

12. Conditionals
Suppose we want the.NH macro to leave two

extra inches of space just before section 1, but
nowhere else. The cleanest way to do that is to test
inside the.NH macro whether the section number is
1, and add some space if it is. The.if command
provides the conditional test that we can add just
before the heading line is output:

.if \\n(NH=1 .sp 2i \" 1st section only

The condition after the.if can be any arithmetic
or logical expression. If the condition is logically
true, or arithmetically greater than zero, the rest of the
line is treated as if it were text� here a command. If
the condition is false, or zero or negative, the rest of

the line is skipped.
It is possible to do more than one command if a

condition is true. Suppose several operations are to be
done before section 1. One possibility is to define a
macro.S1 and invoke it if we are about to do section
1 (as determined by an.if).

.de S1
--- processing for section 1 ---
..
.de NH
...
.if \\n(NH=1 .S1
...
..

An alternate way is to use the extended form of the
.if , like this:

.if \\n(NH=1 \{--- processing
for section 1 ----\}

The braces\{ and \} must occur in the positions
shown or you will get unexpected extra lines in your
output. also provides an ‘if-else’ construction, which
we will not go into here.

A condition can be negated by preceding it with! ;
we get the same effect as above (but less clearly) by
using

.if !\\n(NH>1 .S1

There are a handful of other conditions that can be
tested with .if . For example, is the current page
even or odd?

.if e .tl ’’even page title’’

.if o .tl ’’odd page title’’

gives facing pages different titles when used inside an
appropriate new page macro.

Two other conditions aret andn, which tell you
whether the formatter is or

.if t troff stuff ...

.if n nroff stuff ...

Finally, string comparisons may be made in an
.if :

.if ’string1’string2’ stuff

does ‘stuff’ if string1 is the same asstring2 .
The character separating the strings can be anything
reasonable that is not contained in either string. The
strings themselves can reference strings with* ,
arguments with\$, and so on.

- 12 -

13. Environments
As we mentioned, there is a potential problem

when going across a page boundary: parameters like
size and font for a page title may well be different
from those in effect in the text when the page bound-
ary occurs. provides a very general way to deal with
this and similar situations. There are three ‘environ-
ments’, each of which has independently settable ver-
sions of many of the parameters associated with pro-
cessing, including size, font, line and title lengths,
fill/nofill mode, tab stops, and even partially collected
lines. Thus the titling problem may be readily solved
by processing the main text in one environment and
titles in a separate one with its own suitable parame-
ters.

The command.ev n shifts to environmentn; n
must be 0, 1 or 2. The command.ev with no argu-
ment returns to the previous environment. Environ-
ment names are maintained in a stack, so calls for dif-
ferent environments may be nested and unwound con-
sistently.

Suppose we say that the main text is processed in
environment 0, which is where begins by default.
Then we can modify the new page macro.NP to pro-
cess titles in environment 1 like this:

.de NP

.ev 1 \" shift to new environment

.lt 6i \" set parameters here

.ft 1

.ps 10

... any other processing ...

.ev \" return to prev environment

..

It is also possible to initialize the parameters for an
environment outside the.NP macro, but the version
shown keeps all the processing in one place and is
thus easier to understand and change.

14. Diversions
There are numerous occasions in page layout

when it is necessary to store some text for a period of
time without actually printing it. Footnotes are one
obvious example: the text of the footnote usually
appears in the input well before the place on the page
where it is to be printed is reached. In fact, the place
where it is output normally depends on how big it is,
which implies that there must be a way to process the
footnote at least enough to decide its size without
printing it.

provides a mechanism called a diversion for doing
this processing. Any part of the output may be
diverted into a macro instead of being printed, and
then at some convenient time the macro may be put
back into the input.

The command.di xy begins a diversion� all
subsequent output is collected into the macroxy until
the command.di with no arguments is encountered.
This terminates the diversion. The processed text is
available at any time thereafter, simply by giving the
command

.xy

The vertical size of the last finished diversion is con-
tained in the built-in number registerdn .

As a simple example, suppose we want to imple-
ment a ‘keep-release’ operation, so that text between
the commands.KS and.KE will not be split across a
page boundary (as for a figure or table). Clearly,
when a.KS is encountered, we have to begin divert-
ing the output so we can find out how big it is. Then
when a.KE is seen, we decide whether the diverted
text will fit on the current page, and print it either
there if it fits, or at the top of the next page if it
doesn’t. So:

.de KS \" start keep

.br \" start fresh line

.ev 1 \" collect in new environment

.fi \" make it filled text

.di XX \" collect in XX

..

.de KE \" end keep

.br \" get last partial line

.di \" end diversion

.if \\n(dn>=\\n(.t .bp \" bp if too big

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

..

Recall that number registernl is the current position
on the output page. Since output was being diverted,
this remains at its value when the diversion started.
dn is the amount of text in the diversion;.t (another
built-in register) is the distance to the next trap, which
we assume is at the bottom margin of the page. If the
diversion is large enough to go past the trap, the.if
is satisfied, and a.bp is issued. In either case, the
diverted output is then brought back with.XX . It is
essential to bring it back in no-fill mode so will do no
further processing on it.

This is not the most general keep-release, nor is it
robust in the face of all conceivable inputs, but it
would require more space than we have here to write
it in full generality. This section is not intended to
teach everything about diversions, but to sketch out
enough that you can read existing macro packages
with some comprehension.

- 13 -

15. Acknowledgements
I am deeply indebted to the late J. F. Ossanna, the

author of for his repeated patient explanations of fine
points, and for his continuing willingness to adapt to
make other uses easier.

I am also grateful to Jim Blinn, Ted Dolotta, Doug
McIlroy, Mike Lesk and Joel Sturman for helpful
comments on this paper.

16. References
reference_placement

- 14 -

Appendix A: Character Set
Different output devices support different character sets, although there is considerable commonality. To get the

one on the left, type the four-character name on the right.

\(ff \(fi \(fl \(Fi
_ \(ru � \(em ¼ \(14 ½ \(12
© \(co ° \(de \(dg ′ \(fm
® \(rg � \(bu ¡ \(sq - \(hy

The following are special-font characters:

+ \(pl − \(mi × \(mu ÷ \(di
= \(eq a \(== g \(>= f \(<=
` \(!= ± \(+- ¬ \(no / \(sl
∼ \(ap C \(~= � \(pt � \(gr
� \(-> � \(<- � \(ua � \(da
+ \(is � \(pd � \(if � \(sr
� \(sb � \(sp * \(cu) \(ca
� \(ib � \(ip ∈ \(mo � \(es
´ \(aa ` \(ga Ë \(ci \(L1
§ \(sc ! \(dd \(lh \(rh
 \(lt  \(rt  \(lc  \(rc
 \(lb  \(rb  \(lf  \(rf
 \(lk  \(rk  \(bv ς \(ts

 \(br | \(or _ \(ul  \(rn
� \(**

These four characters also have two-character names. The ´ is the apostrophe on terminals; the ` is the other
quote mark.

´ \´ ` \` − \ − � \(em

For greek, precede the roman letter by\(* to get the corresponding greek; for example,\(*a is α.

a b g d e z y h i k l m n c o p r s t u f x q w
α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ φ χ ψ ω

A B G D E Z Y H I K L M N C O P R S T U F X Q W
Α Β Γ ∆ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω

Appendix B: Some Common Fonts
The following fonts are currently available on our
Laserwriter II printers. The magictroff short name is
given as well as the name in the font catalog.
AvantGarde-BookOblique (AI)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
AvantGarde-Book (AR)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
AvantGarde-DemiOblique (AI)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
AvantGarde-Demi (AB)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Bookman-DemiItalic (KX)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Bookman-Demi (KB)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Bookman-LightItalic (KI)
abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Bookman-Light (KR)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Courier-BoldOblique (CX)
abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

- 15 -

Courier-Bold (CB)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Courier-Oblique (CI)
abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Courier (CW)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Helvetica-BoldOblique (HX)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Helvetica-Bold (HB)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Helvetica-Narrow-BoldOblique (Hx)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Helvetica-Narrow-Bold (Hb)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Helvetica-Narrow-Oblique (Hi)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Helvetica-Narrow (Hx)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Helvetica-Oblique (HI)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Helvetica (H)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
NewCenturySchlbk-BoldItalic (NX)
abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

NewCenturySchlbk-Bold (NB)
abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

NewCenturySchlbk-Italic (NI)
abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

NewCenturySchlbk-Roman (NR)
abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Palatino-BoldItalic (PX)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Palatino-Bold (PB)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Palatino-Italic (PI)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Palatino-Roman (PA)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Times-BoldItalic (BI)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Times-Bold (B)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Times-Italic (I)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Times-Roman (R)
abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZapfChancery-MediumItalic (ZI)
abcdefghijklmnopqrstuvwxyz 0123456789

ABCDEFGHIJKLMNOPQRSTUVWXYZ

