
Troff User’s Manual

Joseph F. Ossanna

Brian W. Kernighan

Bell Laboratories

Murray Hill, New Jersey 07974

Introduction

Troff andnroff are text processors that format text for typesetter- and typewriter-like terminals, respectively.
They accept lines of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed style.Troff andnroff offer unusual freedom in document styling: arbi-
trary style headers and footers; arbitrary style footnotes; multiple automatic sequence numbering for paragraphs, sec-
tions, etc; multiple column output; dynamic font and point-size control; arbitrary horizontal and vertical local
motions at any point; and a family of automatic overstriking, bracket construction, and line-drawing functions.

Troff produces its output in a device-independent form, although parameterized for a specific device;troff out-
put must be processed by a driver for that device to produce printed output.

Troff andnroff are highly compatible with each other and it is almost always possible to prepare input accept-
able to both. Conditional input is provided that enables the user to embed input expressly destined for either pro-
gram. Nroff can prepare output directly for a variety of terminal types and is capable of utilizing the full resolution
of each terminal. A warning for the future, however:nroff is near the end of its useful life, and it is not supported or
maintained. There has been no attempt to add moderntroff features tonroff .

Background to the Second Edition

Troff was originally written by the late Joe Ossanna in about 1973, in assembly language for thePDP-11, to
drive the Graphic Systems CAT typesetter. It was rewritten in C around 1975, and underwent slow but steady evo-
lution until Ossanna’s death late in 1977.

In 1979, Brian Kernighan modifiedtroff so that it would produce output for a variety of typesetters, while
retaining its input specifications. Over the decade from 1979 to 1989, the internals have been modestly revised,
though much of the code remains as it was when Ossanna wrote it.

Troff reads parameter files each time it is invoked, to set values for machine resolution, legal type sizes and
fonts, and character names, character widths and the like.Troff output isASCII characters in a simple language that
describes where each character is to be placed and in what size and font. A post-processor must be written for each
device to convert this typesetter-independent language into specific instructions for that device.

The output language contains information that was not readily identifiable in the older output. Most notably,
the beginning of each page and line is marked, so post-processors can do device-specific optimizations such as sort-
ing the data vertically or printing it boustrophedonically, independent oftroff.

Capabilities for graphics have been added.troff now recognizes commands for drawing diagonal lines, cir-
cles, ellipses, circular arcs, and quadratic B-splines; there are also ways to pass arbitrary information to the output
unprocessed bytroff.

A number of limitations have been eased or eliminated. A document may have an arbitrary number of fonts
on any page (if the output device permits it, of course). Fonts may be accessed merely by naming them; ‘‘mount-
ing’’ is no longer necessary. There are no limits on the number of characters.Character heightandslant may be set

 This is a version of reference(v7man troff reference) revised by B. W. Kernighan.

- 2 -

independently of width.

The remainder of this document contains a description of usage and command-line options; a summary of
requests, escape sequences, and pre-defined number registers; a reference manual; tutorial examples; and a list of
commonly-available characters.

Acknowledgements

Joe Ossanna’stroff remains a remarkable accomplishment. For fifteen years, it has proven a robust tool, tak-
ing unbelievable abuse from a variety of preprocessors and being forced into uses that were never conceived of in
the original design, all with considerable grace under fire.

The current version oftroff has profited from significant code improvements by Jaap Akkerhuis, Dennis
Ritchie, Ken Thompson, and Molly Wagner. Andrew Hume, Doug McIlroy, and Ravi Sethi made valuable sugges-
tions on the manual. I fear that the remaining bugs are my fault.

References

reference_placement

- 3 -

Usage
Troff or nroff is invoked as

troff options files
nroff options files

whereoptionsrepresents any of a number of option arguments andf iles represents the list of files containing the
document to be formatted. An argument consisting of a single minus ‘- ’ is taken to be a filename corresponding to
the standard input. If no filenames are given input is taken from the standard input. The options, which may appear
in any order so long as they appear before the files, are:

-mname Read the macro file/usr/lib/tmac. namebefore the inputf iles.
-T name Specifies the type of the output device. Specific devices are site-dependent. For

troff, useful names includepost (Postscript, the default),202 (Linotron 202),
and aps (Autologic APS-5). Fornroff , useful names include37 for the
(default) Model 37 Teletype®,450 for the DASI-450 (Diablo Hyterm),lp for
‘‘dumb’’ line printer terminals (no half-line motions, no reverse motions, and
think for the HP ThinkJet printer.

-i Read standard input after the input files are exhausted.
-o list Print only pages whose page numbers appear inlist, which consists of comma-

separated numbers and number ranges. A number range has the formN − M and
means pagesN throughM; a initial − N means from the beginning to pageN; and
a finalN − means fromN to the end.

-n N Number first generated pageN.
-r aN Set number registera (one-character) toN.
-s N Stop everyN pages. Nroff will halt prior to everyN pages (defaultN = 1) to

allow paper loading or changing, and will resume upon receipt of a newline.
Troff will include a ‘‘pause’’ code everyN pages; its meaning, if any, depends
on the output device.

-u N Set amount of emboldening for thebd request toN.
-F path Look in directorypath for font information; default is/usr/lib/font for

troff and/usr/lib/term for nroff.

troff Only
-a Send a printable(ASCII) approximation of the results to the standard output.

nroff Only
-e Produce equally-spaced words in adjusted lines, using full terminal resolution.
-h Use tabs instead of spaces to speed up printing.
-q Invoke the simultaneous input-output mode of therd request.

Each option is a separate argument; for example,

troff -Tpost -ms -o4,6,8-10 f ile1 f ile2

requests formatting of pages 4, 6, and 8 through 10 of a document contained in the files namedf ile1 andf ile2, spec-
ifies the output device as a Postscript printer, and invokes the macro package-ms .

Various pre- and post-processors are available for use withnroff andtroff. These include the equation prepro-
cessoreqn (for troff only), the table-construction preprocessortbl, andpic, ideal, andgrap for various forms of
graphics. A reverse-line postprocessorcol is available for multiple-columnnroff output on terminals without
reverse-line ability;col expects the Model 37 Teletype escape sequences thatnroff produces by default.

- 4 -

Request Summary
In the following table, the notation ±N in the Request Formcolumn means that the formsN, + N, or − N are

permitted, to set the parameter toN, increment it byN, or decrement it byN, respectively. PlainN means that the
value is used to set the parameter.Initial Values separated by; are for troff andnroff respectively. In theNotes
column,

B Request normally causes a break. The use of’ as control character (instead of
.) suppresses the break function.

D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
O Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.
T troff only; no effect innroff.

v, p, m, u Default scale indicator; if not specified, scale indicators are ignored.

Request Initial If No
Form Value Argument Notes Explanation

1. General Information

2. Font and Character Size Control

.ps ± N 10 point previous E,T Point size; also\s ±N.

.ss N 12/36m ignored E,T Space-character size set toN/36 em.

.cs F N M off - P,T Constant character space (width) mode (fontF).

.bd F N off - P,T Embolden fontF by N − 1 units.

.bd S F N off - P,T Embolden Special Font when current font isF.

.ft F Roman previous E Change to fontF; also \f x, \f(xx, \f N.

.fp N F L R,I,B,...,S ignored - Mount font namedF on physical positionN ≥ 1;
long name isL if given.

3. Page Control
.pl ± N 11i 11i v Page length.
.bp ± N N = 1 - B,v Eject current page; next page numberN.
.pn ± N N = 1 ignored - Next page numberN.
.po ± N 1i; 0 previous v Page offset.
.ne N - N = 1v D,v NeedN vertical space.
.mk R none internal D Mark current vertical place in registerR.
.rt ± N none internal D,v Return (upward only) to marked vertical place.

4. Text Filling, Adjusting, and Centering
.br - - B Break.
.fi fill - B,E Fill output lines.
.nf fill - B,E No filling or adjusting of output lines.
.ad c adj, both adjust E Adjust output lines with modec; c = l , r ,c ,b ,none
.na adjust - E No output line adjusting.
.ce N off N = 1 B,E Center nextN input text lines.

5. Vertical Spacing
.vs N 12p; 1/6i previous E,p Vertical baseline spacing (V).
.ls N N = 1 previous E OutputN − 1 v’s after each text output line.
.sp N - N = 1v B,v Space vertical distanceN in either direction.
.sv N - N = 1v v Save vertical distanceN.
.os - - - Output saved vertical distance.
.ns space - D Turn no-space mode on.
.rs - - D Restore spacing; turn no-space mode off.

6. Line Length and Indenting
.ll ± N 6.5i previous E,m Line length.
.in ± N N = 0 previous B,E,m Indent.
.ti ± N - ignored B,E,m Temporary indent.

- 5 -

7. Macros, Strings, Diversion, and Position Traps
.de xx yy - .yy= .. - Define or redefine macroxx; end at call ofyy.
.am xx yy - .yy= .. - Append to a macro.
.ds xx string - ignored - Define a stringxx containingstring.
.as xx string - ignored - Appendstring to stringxx.
.rm xx - ignored - Remove request, macro, or string.
.rn xx yy - ignored - Rename request, macro, or stringxx to yy.
.di xx - end D Divert output to macroxx.
.da xx - end D Divert and append toxx.
.wh N xx - - v Set location trap; negative is w.r.t. page bottom.
.ch xx N - - v Change trap location.
.dt N xx - off D,v Set a diversion trap.
.it N xx - off E Set an input-line count trap.
.em xx none none - End macro isxx.

8. Number Registers
.nr R ±N M - u Define and set number registerR; auto-increment byM.
.af R c arabic - - Assign format to registerR (c = 1 , i , I ,a ,A).
.rr R - - - Remove registerR.

9. Tabs, Leaders, and Fields
.ta Nt ... 0.5i; 0.8n none E,m Tab settings; left-adjusting, unlesst = R (right), C (centered).
.tc c none none E Tab repetition character.
.lc c . none E Leader repetition character.
.fc a b off off - Set field delimitera and pad characterb.

10. Input and Output Conventions and Character Translations
.ec c \ \ - Set escape character.
.eo on - - Turn off escape character mechanism.
.lg N on; - on T Ligature mode on ifN > 0.
.ul N off N = 1 E Underline (italicize introff) N input lines.
.cu N off N = 1 E Continuous underline innroff; in troff, like ul .
.uf F Italic Italic - Underline font set toF (to be switched to byul).
.cc c . . E Set control character toc.
.c2 c ’ ’ E Set no-break control character toc.
.tr abcd.... none - O Translatea to b, etc., on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line-drawing, Graphics, and Zero-width Functions

13. Hyphenation.
.nh hyphenate - E No hyphenation.
.hy N hyphenate hyphenate E Hyphenate;N = mode.
.hc c \% \% E Hyphenation indicator characterc.
.hw word ... ignored - Add words to hyphenation dictionary.

14. Three-Part Titles.
.tl ′ l ′c′r ′ - - Three-part title; delimiter may be any character.
.pc c % off - Page number character.
.lt ± N 6.5i previous E,m Length of title.

15. Output Line Numbering.
.nm ± N M S I off E Number mode on or off, set parameters.
.nn N - N = 1 E Do not number nextN lines.

16. Conditional Acceptance of Input
.if c any - - If condition c true, acceptanyas input;

for multi-line, use\{ any\} .
.if ! c any - - If condition c false, acceptany.
.if N any - u If expressionN > 0, acceptany.
.if ! N any - u If expressionNf0 [sic], acceptany.
.if ′s1′s2′ any - - If string s1 identical tos2, acceptany.
.if ! ′s1′s2′ any - - If string s1 not identical tos2, acceptany.

- 6 -

.ie c any - u If portion of if-else; all above forms (likeif).

.el any - - Else portion of if-else.

17. Environment Switching
.ev N N = 0 previous - Environment switch (push down).

18. Insertions from the Standard Input
.rd prompt - prompt=BEL - Read insertion.
.ex - - - Exit.

19. Input/Output File Switching
.so f ilename - - Switch source file (push down).
.nx f ilename end-of-file - Next file.
.sy string - - Execute programstring. Output is not interpolated.
.pi string - - Pipe output to programstring.
.cf f ilename - - Copy file contents totroff output.

20. Miscellaneous
.mc c N - off E,m Set margin characterc and separationN.
.tm string - newline - Printstring on terminal (standard error).
.ab string - newline - Printstring on standard error, exit program.
.ig yy - .yy= .. - Ignore input until call ofyy.
.lf N f - - Set input line number toN and filename tof.
.pm t - all - Print macro names, sizes; ift present, print only total of sizes.
.fl - - B Flush output buffer.

21. Output and Error Messages

22. Output Language

23. Device and Font Description Files

Alphabetical Request and Section Number Cross Reference

ab 20
ad 4
af 8
am 7
as 7
bd 2
bp 3
br 4
c2 10
cc 10

ce 4
cf 19
ch 7
cs 2
cu 10
da 7
de 7
di 7
ds 7
dt 7

ec 10
el 16
em 7
eo 10
ev 17
ex 18
fc 9
fi 4
fl 20
fp 2

ft 2
hc 13
hw 13
hy 13
ie 16
if 16
ig 20
in 6
it 7
lc 9

lg 10
lf 20
ll 6
ls 5
lt 14
mc 20
mk 3
na 4
ne 3
nf 4

nh 13
nm 15
nn 15
nr 8
ns 5
nx 19
os 5
pc 14
pi 19
pl 3

pm 20
pn 3
po 3
ps 2
rd 18
rm 7
rn 7
rr 8
rs 5
rt 3

so 19
sp 5
ss 2
sv 5
sy 19
ta 9
tc 9
ti 6
tl 14
tm 20

tr 10
uf 10
ul 10
vs 5
wh 7

- 7 -

Escape Sequences for Characters, Indicators, and Functions

Section Escape
Reference Sequence Meaning

10.1 \\ \ prevents or delays the interpretation of\
10.1 \e Printable version of the current escape character.
2.1 \’ ´ (acute accent); equivalent to\(aa
2.1 \‘ ` (grave accent); equivalent to\(ga
2.1 \ � � Minus sign in the current font
7. \. Period (dot) (seede)

11.1 \ space Unpaddable space-size space character
11.1 \0 Digit width space
11.1 \| 1/6 em narrow space character (zero width innroff)
11.1 \^ 1/12 em half-narrow space character (zero width innroff)
4.1 \& Non-printing, zero width character

10.6 \! Transparent line indicator
10.8 \" Beginning of comment; continues to end of line
13. \% Default optional hyphenation character
2.1 \(xx Character namedxx
7.1 * x, *(xx Interpolate stringx or xx
7.3 \$ N Interpolate argument 1fNf9
9.1 \a Non-interpreted leader character

12.3 \b’ abc...’ Bracket building function
4.2 \c Connect to next input text
2.1 \C’ xyz’ Character namedxyz

11.1 \d Downward 1/2 em vertical motion (1/2 line innroff)
12.5 \D’ c...’ Draw graphics functionc with parameters...; c = l ,c ,e ,a ,~
2.2 \f x, \f(xx, \f N Change to font namedx or xx, or positionN
8. \g x, \g(xx Format of number registerx or xx

11.1 \h’ N’ Local horizontal motion; move rightN (negative left)
2.3 \H’ N’ Height of current font isN

11.3 \k x Mark horizontal input place in registerx
12.4 \l’ Nc’ Horizontal line drawing function (optionally withc)
12.4 \L’ Nc’ Vertical line drawing function (optionally withc)
8. \n x, \n(xx Contents of number registerx or xx
2.1 \N’ N’ Character numberN on current font

12.1 \o’ abc...’ Overstrike charactersa, b, c, ...
4.1 \p Break and spread output line

11.1 \r Reverse 1 em vertical motion (reverse line innroff)
2.3 \s N, \s± N Point-size change function; also\s(nn, \s ± (nn
2.2 \S’ N’ Slant outputN degrees
9.1 \t Non-interpreted horizontal tab

11.1 \u Reverse (up) 1/2 em vertical motion (1/2 line innroff)
11.1 \v’ N’ Local vertical motion; move down N (negative up)
11.2 \w’ string’ Width of string
5.2 \x’ N’ Extra line-space function (negative before, positive after)

10.7 \X’ string’ Ouputstring as device control function
12.2 \z c Print c with zero width (without spacing)
16. \{ Begin conditional input
16. \} End conditional input
10.8 \ newline Concealed (ignored) newline

- \ Z Z, any character not listed above

The escape sequences\\ , \. , \" , \$, * , \a , \n , \t , \g , and\ newlineare interpreted in copy mode (§7.2).

- 8 -

Predefined Number Registers

Section Register
Reference Name Description

3. % Current page number.
11.2 ct Character type (set by\w function).
7.4 dl Width (maximum) of last completed diversion.
7.4 dn Height (vertical size) of last completed diversion.
- dw Current day of the week (1-7).
- dy Current day of the month (1-31).

15. ln Output line number.
- mo Current month (1-12).
4.1 nl Vertical position of last printed text baseline.

11.2 sb Depth of string below baseline (generated by\w function).
11.2 st Height of string above baseline (generated by\w function).

- yr Last two digits of current year.

Predefined Read-Only Number Registers

Section Register
Reference Name Description

19. $$ Process id oftroff or nroff.
7.3 .$ Number of arguments available at the current macro level.
5.2 .a Post-line extra line-space most recently used in\x’ N ’ .
- .A Set to 1 introff, if − a option used; always 1 innroff.
2.3 .b Emboldening level.

20. .c Number of lines read from current input file.
7.4 .d Current vertical place in current diversion; equal tonl , if no diversion.
2.2 .f Current font number.

20. .F Current input file name [sic].
4. .h Text baseline high-water mark on current page or diversion.

11.1 .H Available horizontal resolution in basic units.
6. .i Current indent.
4.2 .j Currentad mode.
4.1 .k Current output horizontal position.
6. .l Current line length.
5.1 .L Currentls value.
4. .n Length of text portion on previous output line.
3. .o Current page offset.
3. .p Current page length.
7.5 .R Number of unused number registers.
- .T Set to 1 innroff, if �T option used; always 0 introff.
2.3 .s Current point size.
7.5 .t Distance to the next trap.
4.1 .u Equal to 1 in fill mode and 0 in nofill mode.
5.1 .v Current vertical line spacing.

11.1 .V Available vertical resolution in basic units.
11.2 .w Width of previous character.

- .x Reserved version-dependent register.
- .y Reserved version-dependent register.
7.4 .z Name [sic] of current diversion.

- 9 -

Reference Manual

1. General Explanation

1.1. Form of input. Input consists oftext lines, which are destined to be printed, interspersed withcontrol lines,
which set parameters or otherwise control subsequent processing. Control lines begin with acontrol character�
normally . (period) or’ (single quote)�followed by a one or two character name that specifies a basicrequestor
the substitution of a user-definedmacro in place of the control line. The control character’ suppresses thebreak
function�the forced output of a partially filled line�caused by certain requests. The control character may be sep-
arated from the request/macro name by white space (spaces and/or tabs) for aesthetic reasons. Names should be fol-
lowed by either space or newline. Control lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of anescapecharacter, normally
\ . For example, the function\n R causes the interpolation of the contents of thenumber register Rin place of the
function; hereR is either a single character name as in\n x, or a two-character name introduced by a left-parenthesis,
as in\n(xx.

1.2. Formatter and device resolution.Troff internally stores and processes dimensions in units that correspond to
the particular device for which output is being prepared; values from 300 to 1200/inch are typical. See §23.Nroff
internally uses 240 units/inch, corresponding to the least common multiple of the horizontal and vertical resolutions
of various typewriter-like output devices.Troff rounds horizontal/vertical numerical parameter input to the actual
horizontal/vertical resolution of the output device indicated by the-T option (defaultpost). Nroff similarly rounds
numerical input to the actual resolution of its output device (default Model 37 Teletype).

1.3. Numerical parameter input. Both nroff and troff accept numerical input with the appended scale indicators
shown in the following table, whereS is the current type size in points andV is the current vertical line spacing in
basic units.

Scale

Indicator Meaning_____________________________
i Inch
c Centimeter
P Pica = 1/6 inch
m Em =Spoints
n En = Em/2
p Point = 1/72 inch
u Basic unit
v Vertical line spaceV

none Default, see below_____________________________









































In nroff, both the em and the en are taken to be equal to the nominal character width, which is output-device depen-
dent; common values are 1/10 and 1/12 inch. Actual character widths innroff need not be all the same and con-
structed characters such as�> (�) are often extra wide. The default scaling ism for the horizontally-oriented
requests and functionsll , in , ti , ta , lt , po , mc, \h , \l , and horizontal coordinates of\D ; v for the vertically-
oriented requests and functionspl , wh, ch , dt , sp , sv , ne , rt , \v , \x , \L , and vertical coordinates of\D ; p for
thevs request; andu for the requestsnr , if , andie . All other requests ignore any scale indicators. When a num-
ber register containing an already appropriately scaled number is interpolated to provide numerical input, the unit
scale indicatoru may need to be appended to prevent an additional inappropriate default scaling. The number,N,
may be specified in decimal-fraction form but the parameter finally stored is rounded to an integer number of basic
units. Internal computations are performed in integer arithmetic.

Theabsolute positionindicator| may be prepended to a numberN to generate the distance to the vertical or
horizontal placeN. For vertically-oriented requests and functions,| N becomes the distance in basic units from the
current vertical place on the page or in adiversion(§7.4) to the vertical placeN. For all other requests and func-
tions, | N becomes the distance from the current horizontal place on theinput line to the horizontal placeN. For
example,

.sp |3.2c

will space in the required direction to 3.2 centimeters from the top of the page.

- 10 -

1.4. Numerical expressions.Wherever numerical input is expected an expression involving parentheses, the arith-
metic operators+, - , / , �, %(mod), and the logical operators<, >, <=, >=, = (or ==), & (and),: (or) may be used.
Except where controlled by parentheses, evaluation of expressions is left-to-right; there is no operator precedence.
In the case of certain requests, an initial+ or - is stripped and interpreted as an increment or decrement indicator
respectively. In the presence of default scaling, the desired scale indicator must be attached toeverynumber in an
expression for which the desired and default scaling differ. For example, if the number registerx contains 2 and the
current point size is 10, then

.ll (4.25i+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 3 ems.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the argument may
take the formsN, + N, or − N and that the corresponding effect is to set the parameter toN, to increment it byN, or to
decrement it byN respectively. PlainN means that an initial algebraic sign isnot an increment indicator, but merely
the sign ofN. Generally, unreasonable numerical input is either ignored or truncated to a reasonable value. For
example, most requests expect to set parameters to non-negative values; exceptions aresp , wh, ch , nr , and if .
The requestsps , ft , po , vs , ls , ll , in , andlt restore the previous parameter value in the absence of an argu-
ment.

Single character arguments are indicated by single lower case letters and one/two character arguments are
indicated by a pair of lower case letters. Character string arguments are indicated by multi-character mnemonics.

2. Font and Character Size Control

2.1. Character set. The troff character set is defined by a description file specific to each output device (§23).
There are normally several regular fonts and one or more special fonts. Characters are input as themselves (ASCII),
as \(xx, as \C’ name’ , or as\N’ n’ . The form\C’ name’ permits a name of any length; the form\N’ n’ refers
to then-th character on the current font, whether named or not.

Normally the input characters’ , ‘ , and- are printed as ‘, ’, and - respectively;\’ , \‘ , and\- produce ´, `,
and �. Non-existent characters are printed as a 1-em space.

Nroff has an analogous, but different, mechanism for defining legal characters and how to print them. By
default allASCII characters are valid. There are such additional characters as may be available on the output device,
such characters as may be able to be constructed by overstriking or other combination, and those that can reasonably
be mapped into other printable characters. The exact behavior is determined by a driving table prepared for each
device.

2.2. Fonts. Troff begins execution by reading information for a set of defaults fonts, said to bemounted; conven-
tionally, the first four are Times Roman (R), Times Italic(I), Times Bold (B), andTimes Bold Italic (BI) , and the
last is a Special font (S) containing miscellaneous characters. These fonts are used in this document. The set of
fonts and positions is determined by the device description file, described in §23.

The current font, initially Roman, may be changed by use of theft request, or by embedding at any desired
point either\f x, \f(xx, or \f N, wherex andxxare the name of a font andN is a numerical font position.

It is not necessary to change to the Special font; characters on that font are automatically handled as if they
were physically part of the current font. The Special font may actually be several fonts; the nameS is reserved and
is generally used for one of these. All special fonts must be mounted after regular fonts.

Troff can be informed that any particular font is mounted by use of thefp request. The list of known fonts is
installation dependent. In the subsequent discussion of font-related requests,F represents either a one/two-character
font name or the numerical font position. The current font is available (as a numerical position) in the read-only
number register.f .

A request for a named but not-mounted font is honored if the font description information exists. In this way,
there is no limit on the number of fonts that may be printed in any part of a document. Mounted fonts may be han-
dled more efficiently, and they may be referred to by their mount positions, but there is no other difference.

The function\S’± N’ causes the current font to be slanted by ±N degrees. Not all devices support slanting.

- 11 -

Nroff understands font control and normally underlines italic characters (see §10.5).

2.3. Character size.Character point sizes available depend on the specific output device; a typical (historical) set
of values is 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inch. Theps
request is used to change or restore the point size. Alternatively the point size may be changed between any two
characters by embedding a\s N at the desired point to set the size toN, or a \s± N (1≤ N ≤ 9) to
increment/decrement the size byN; \s0 restores the previous size. Requested point size values that are between
two valid sizes yield the larger of the two.

Note that through an accident of history, a construction like\s39 is parsed as size 39, and thus converted to
size 36 (given the sizes above), while\s40 is parsed as size 4 followed by0. The syntax\s(nn and \s ± (nn
permits specification of sizes that would otherwise be ambiguous.

The current size is available in the.s register.Nroff ignores type size requests.

The function\H’± N’ setsthe height of the current fontto N, or increments it by+ N, or decrements it by− N;
if N = 0, the height is restored to the current point size. In each case, the width is unchanged. Not all devices sup-
port independent height and width for characters.

Request Initial If No
Form Value Argument Notes

.ps ±N* 10 point previous E

Point size set to ±N. Alternatively embed\s N or \s± N. Any positive size value may be requested;
if invalid, the next larger valid size will result, with a maximum of 36. A paired sequence+ N, − N
will work because the previous requested value is also remembered. Ignored innroff.

.ss N 12/36 em ignored E

Space-character size (i.e., inter-word gap) is set toN/36 ems. This size is the minimum word spacing
in adjusted text. Ignored innroff.

.cs F N M off - P

Constant character space (width) mode is set on for fontF (if mounted); the width of every character
will be taken to beN/36 ems. IfM is absent, the em is that of the character’s point size; ifM is given,
the em isM points. All affected characters are centered in this space, including those with an actual
width larger than this space. Special Font characters occurring while the current font isF are also so
treated. IfN is absent, the mode is turned off. The mode must be in effect when the characters are
physically printed. Ignored innroff.

.bd F N off - P

The characters in fontF will be artificially emboldened by printing each one twice, separated byN − 1
basic units. A reasonable value forN is 3 when the character size is near 10 points. IfN is missing
the embolden mode is turned off. The emboldening valueN is in the.b register.

TThhiiss ppaarraaggrraapphh iiss pprriinntteedd wwiitthh.bd R 3 .. TThhee mmooddee mmuusstt bbee iinn eeffffeecctt wwhheenn tthhee cchhaarraacctteerrss aarree
pphhyyssiiccaallllyy pprriinntteedd.. IIggnnoorreedd iinnnroff..

.bd S F N off - P

The characters in the Special font will be emboldened whenever the current font isF. The mode must
be in effect when the characters are physically printed. Ignored innroff.

.ft F Roman previous E

Font changed toF. Alternatively, embed\f F. The font nameP is reserved to mean the previous
font, and the nameS for the special font.

.fp N F L R,I,B,...,S ignored -

Font position. This is a statement that a font namedF is associated with positionN. It is a fatal error
if F is not known. For fonts with names longer than two characters,L refers to the long name, andF
becomes a synonym. There is generally a limit of about 10 mounted fonts.

*The fields have the same meaning as described earlier in the Request Summary.

- 12 -

3. Page control

Top and bottom margins are not automatically provided; it is conventional to define twomacrosand to set
traps for them at vertical positions 0 (top) and− N (distanceN up from the bottom). See §7 and Tutorial Examples
§T2. A pseudo-page transition onto the first page occurs either when the firstbreakoccurs or when the firstnon-
diverted text processing occurs. Arrangements for a trap to occur at the top of the first page must be completed
before this transition. In the following, references to thecurrent diversion(§7.4) mean that the mechanism being
described works during both ordinary and diverted output (the former considered as the top diversion level).

The limitations ontroff andnroff output dimensions are device dependent.

.pl ±N 11 in 11 in v

Page length set to ±N. The current page length is available in the.p register.

.bp ±N N=1 - B,v

Begin page. The current page is ejected and a new page is begun. If ±N is given, the new page num-
ber will be ±N. Also see requestns .

.pn ±N N=1 ignored -

Page number. The next page (when it occurs) will have the page number ±N. A pn must occur
before the initial pseudo-page transition to affect the page number of the first page. The current page
number is in the%register.

.po ±N 1 in; 0 previous v

Page offset. The currentleft marginis set to ±N. Thetroff initial value provides 1 inch of paper mar-
gin on a typical device. The current page offset is available in the.o register.

.ne N - N=1V D,v

NeedN vertical space. If the distanceD to the next trap position (see §7.5) is less thanN, a forward
vertical space of sizeD occurs, which will spring the trap. If there are no remaining traps on the page,
D is the distance to the bottom of the page. IfD < V, another line could still be output and spring the
trap. In a diversion,D is the distance to thediversion trap, if any, or is very large.

.mk R none internal D

Mark the current vertical place in an internal register (both associated with the current diversion
level), or in registerR, if given. Seert request.

.rt ±N none internal D,v

Returnupward onlyto a marked vertical place in the current diversion. If ±N (with respect to current
place) is given, the place is ±N from the top of the page or diversion or, ifN is absent, to a place
marked by a previousmk. Thesp request (§5.3) may be used in all cases instead ofrt by spacing to
the absolute place stored in a explicit register, e.g., using the sequence.mk Rsp |\n Ru; this
also works when the motion is downwards.

4. Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a output text
line until some word does not fit. An attempt is then made to hyphenate the word to put part of it into the output
line. The spaces between the words on the output line are then increased to spread out the line to the currentline
length minus any currentindent. A word is any string of characters delimited by thespacecharacter or the
beginning/end of the input line. Any adjacent pair of words that must be kept together (neither split across output
lines nor spread apart in the adjustment process) can be tied together by separating them with theunpaddable space
character ‘‘\ ’’ (backslash-space). The adjusted word spacings are uniform introff and the minimum interword
spacing can be controlled with thess request (§2). Innroff, they are normally nonuniform because of quantization
to character-size spaces; however, the command line option-e causes uniform spacing with full output device reso-
lution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The text length on the last line
output is available in the.n register, and text baseline position on the page for this line is in thenl register. The
text baseline high-water mark (lowest place) on the current page is in the.h register. The current horizontal output
position is in the.k register.

- 13 -

An input text line ending with. , ?, or ! , optionally followed by any number of" , ’ ,) ,] , * , or , is taken to
be the end of a sentence, and an additional space character is automatically provided during filling. To prevent this,
add\& to the end of the input line. Multiple inter-word space characters found in the input are retained, except for
trailing spaces; initial spaces also cause a break.

When filling is in effect, a\p may be embedded or attached to a word to cause a break at the end of the word
and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made not to look like a control line by
prefixing it with the non-printing, zero-width filler character\& . Still another way is to specify output translation of
some convenient character into the control character usingtr (§10.5).

4.2. Interrupted text. The copying of a input line innofill (non-fill) mode can be interrupted by terminating the
partial line with a\c . The next encountered input text line will be considered to be a continuation of the same line
of input text. Similarly, a word withinfilled text may be interrupted by terminating the word (and line) with\c ; the
next encountered text will be taken as a continuation of the interrupted word. If the intervening control lines cause a
break, any partial line will be forced out along with any partial word.

.br - - B

Break. The filling of the line currently being collected is stopped and the line is output without
adjustment. Text lines beginning with space characters (but not tabs) and empty text lines (blank
lines) also cause a break.

.fi fill on - B,E

Fill subsequent output lines. The register.u is 1 in fill mode and 0 in nofill mode.

.nf fill on - B,E

Nofill. Subsequent output lines are neither filled nor adjusted. Input text lines are copied directly to
output lines without regard for the current line length.

.ad c adj, both adjust E

Line adjustment is begun. If fill mode is not on, adjustment will be deferred until fill mode is back
on. If the type indicatorc is present, the adjustment type is changed as shown in the following table.

Indicator Adjust Type________________________________

l adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged________________________________
























The number register.j contains the current value of thead setting; its value can be recorded and
used subsequently to set adjustment.

.na adjust - E

Noadjust. Adjustment is turned off; the right margin will be ragged. The adjustment type forad is
not changed. Output line filling still occurs if fill mode is on.

.ce N off N = 1 B,E

Center the nextN input text lines within the current available horizontal space (line-length minus
indent). If N = 0, any residual count is cleared. A break occurs after each of theN input lines. If the
input line is too long, it will be left adjusted.

5. Vertical Spacing

5.1. Baseline spacing.The vertical spacing (V) between the baselines of successive output lines can be set using
the vs request.V should be large enough to accommodate the character sizes on the affected output lines. For the
common type sizes (9-12 points), usual typesetting practice is to setV to 2 points greater than the point size;troff
default is 10-point type on a 12-point spacing (as in this document). The currentV is available in the.v register.
Multiple-V line separation (e.g., double spacing) may be requested withls , but it is better to use a largevs instead;

- 14 -

certain preprocessors assume single spacing. The current line spacing is available in the.L register.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it to have
extra vertical space before and/or after it, theextra-line-spacefunction \x’ N’ can be embedded in or attached to
that word. IfN is negative, the output line containing the word will be preceded byN extra vertical space; ifN is
positive, the output line containing the word will be followed byN extra vertical space. If successive requests for
extra space apply to the same line, the maximum values are used. The most recently utilized post-line extra line-
space is available in the.a register.

In \x’ ...’ and other functions having a pair of delimiters around their parameter, the delimiter choice (here
’) is arbitrary, except that it can not look like the continuation of a number expression forN.

5.3. Blocks of vertical space.A block of vertical space is ordinarily requested usingsp , which honors theno-
spacemode and which does not space past a trap. A contiguous block of vertical space may be reserved usingsv .

.vs N 12pts; 1/6in previous E,p

Set vertical baseline spacing sizeV. Transient extra vertical space is available with\x ’N ’ (see
above).

.ls N N = 1 previous E

Line spacing set to ±N. N − 1 Vs (blank lines) are appended to each output text line. Appended blank
lines are omitted, if the text or previous appended blank line reached a trap position.

.sp N - N = 1 V B,v

Space vertically in either direction. IfN is negative, the motion is backward (upward) and is limited
to the distance to the top of the page. Forward (downward) motion is truncated to the distance to the
nearest trap. If the no-space mode is on, no spacing occurs (seens , andrs below).

.sv N - N = 1 V v

Save a contiguous vertical block of sizeN. If the distance to the next trap is greater thanN, N vertical
space is output. No-space mode has no effect. If this distance is less thanN, no vertical space is
immediately output, butN is remembered for later output (seeos). Subsequentsv requests will over-
write any still rememberedN.

.os - - -

Output saved vertical space. No-space mode has no effect. Used to finally output a block of vertical
space requested by an earliersv request.

.ns space - D

No-space mode turned on. When on, no-space mode inhibitssp requests andbp requestswithout a
next page number. No-space mode is turned off when a line of output occurs, or withrs .

.rs space - D

Restore spacing. The no-space mode is turned off.

Blank text line. - B

Causes a break and output of a blank line exactly likesp 1 .

6. Line Length and Indenting

The maximum line length for fill mode may be set withll . The indent may be set within ; an indent appli-
cable to only the next output line may be set withti . The line length includes indent space but not page offset
space. The line length minus the indent is the basis for centering withce . The effect ofll , in , or ti is delayed, if
a partially collected line exists, until after that line is output. In fill mode the length of text on an output line is less
than or equal to the line length minus the indent. The current line length and indent are available in registers.l and
.i respectively. The length ofthree-part titlesproduced bytl (see §14) is independently set bylt .

.ll ±N 6.5 in previous E,m

Line length is set to ±N.

.in ±N N=0 previous B,E,m

- 15 -

Indent is set to ±N. The indent is prepended to each output line.

.ti ±N - ignored B,E,m

Temporary indent. The next output text line will be indented a distance ±N with respect to the current
indent. The resulting total indent may not be negative. The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings.A macrois a named set of arbitrarylines that may be invoked by name or with atrap. A
string is a named string ofcharacters, not including a newline character, that may be interpolated by name at any
point. Request, macro, and string names share the same name list. Macro and string names may be one or two char-
acters long and may usurp previously defined request, macro, or string names; this implies that built-in operations
may be (irrevocably) redefined. Any of these entities may be renamed withrn or removed withrm.

Macros are created byde and di , and appended to byam and da ; di and da cause normal output to be
stored in a macro. A macro is invoked in the same way as a request; a control line beginning. xxwill interpolate the
contents of macroxx. The remainder of the line may contain up to ninearguments.

Strings are created byds and appended to byas . The stringsx andxx are interpolated at any desired point
with \ �x and\ �(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation.During the definition and extension of strings and macros (not by diversion)
the input is read incopy mode. In copy mode, input is copied without interpretation except that:

� The contents of number registers indicated by\n are interpolated.
� Strings indicated by\ � are interpolated.
� Arguments indicated by\$ are interpolated.
� Concealed newlines indicated by\ newlineare eliminated.
� Comments indicated by\" are eliminated.
� \t and\a are interpreted asASCII horizontal tab andSOHrespectively (§9).
� \\ is interpreted as\ .
� \. is interpreted as ‘‘. ’’.

These interpretations can be suppressed by prepending a\ . For example, since\\ maps into a\ , \\n will copy as
\n , which will be interpreted as a number register indicator when the macro or string is reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to nine argu-
ments. The argument separator is the space character (not tab), and arguments may be surrounded by double quotes
to permit embedded space characters. Pairs of double quotes may be embedded in double-quoted arguments to rep-
resent a single double-quote character. The argument"" is explicitly null. If the desired arguments won’t fit on a
line, a concealed newline may be used to continue on the next line. A trailing double quote may be omitted.

When a macro is invoked theinput levelis pushed downand any arguments available at the previous level
become unavailable until the macro is completely read and the previous level is restored. A macro’s own arguments
can be interpolated at any point within the macro with\$ N, which interpolates theNth argument (1fNf9). If an
invoked argument does not exist, a null string results. For example, the macroxxmay be defined by

.de xx \" begin definition
Today is \\$1 the \\$2.
.. \" end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that each\$ was concealed in the definition with a prepended\ . The number of arguments is in the.$ regis-
ter.

No arguments are available at the top (non-macro) level, within a string, or within a trap-invoked macro.

- 16 -

Arguments are copied in copy mode onto a stack where they are available for reference. It is advisable to con-
ceal string references (with an extra\) to delay interpolation until argument reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing (see
Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing of pages or
columns. A single diversion trap may be set at a specified vertical position. The number registersdn and dl
respectively contain the vertical and horizontal size of the most recently ended diversion. Processed text that is
diverted into a macro retains the vertical size of each of its lines when reread innofill mode regardless of the current
V. Constant-spaced (cs) or emboldened (bd) text that is diverted can be reread correctly only if these modes are
again or still in effect at reread time. One way to do this is to embed in the diversion the appropriatecs or bd
requests with thetransparentmechanism described in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion level
(the top non-diversion level may be thought of as the 0th diversion level). These are the diversion trap and associ-
ated macro, no-space mode, the internally-saved marked place (seemk andrt), the current vertical place (.d regis-
ter), the current high-water text baseline (.h register), and the current diversion name (.z register).

7.5. Traps. Three types of trap mechanisms are available�page traps, a diversion trap, and an input-line-count
trap. Macro-invocation traps may be planted usingwh at any page position including the top. This trap position
may be changed usingch . Trap positions at or below the bottom of the page have no effect unless or until moved to
within the page or rendered effective by an increase in page length. Two traps may be planted at the same position
only by first planting them at different positions and then moving one of the traps; the first planted trap will conceal
the second unless and until the first one is moved (see Tutorial Examples). If the first one is moved back, it again
conceals the second trap. The macro associated with a page trap is automatically invoked when a line of text is out-
put whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the top-of-
page trap, if any, provided there is a next page. The distance to the next trap position is available in the.t register;
if there are no traps between the current position and the bottom of the page, the distance returned is the distance to
the page bottom.

A macro-invocation trap effective in the current diversion may be planted usingdt . The.t register works in
a diversion; if there is no subsequent trap a large distance is returned. For a description of input-line-count traps, see
it below.

.de xx yy - .yy=.. -

Define or redefine the macroxx. The contents of the macro begin on the next input line. Input lines
are copied incopy modeuntil the definition is terminated by a line beginning with. yy, whereupon the
macroyy is called. In the absence ofyy, the definition is terminated by a line beginning with ‘‘.. ’’.
A macro may containde requests provided the terminating macros differ or the contained definition
terminator is concealed. ‘‘.. ’’ can be concealed as\\.. which will copy as\.. and be reread as
‘‘ .. ’’.

.am xx yy - .yy=.. -

Append to macroxx (append version ofde).

.ds xx string - ignored -

Define a stringxx containingstring. Any initial double quote instring is stripped off to permit initial
blanks.

.as xx string - ignored -

Appendstring to stringxx (append version ofds).

.rm xx - ignored -

Remove request, macro, or string. The namexx is removed from the name list and any related storage
space is freed. Subsequent references will have no effect. If many macros and strings are being cre-
ated dynamically, it may become necessary to remove unused ones to recapture internal storage space
for newer registers.

.rn xx yy - ignored -

Rename request, macro, or stringxx to yy. If yyexists, it is first removed.

- 17 -

.di xx - end D

Divert output to macroxx. Normal text processing occurs during diversion except that page offsetting
is not done. The diversion ends when the requestdi or da is encountered without an argument;
extraneous requests of this type should not appear when nested diversions are being used.

.da xx - end D

Divert, appending to macroxx (append version ofdi).

.wh N xx - - v

Install a trap to invokexx at page positionN; a negative N will be interpreted as a distance from the
page bottom. Any macro previously planted atN is replaced byxx. A zeroN refers to the top of a
page. In the absence ofxx, the first trap found atN, if any, is removed.

.ch xx N - - v

Change the trap position for macroxx to beN. In the absence ofN, the trap, if any, is removed.

.dt N xx - off D,v

Install a diversion trap at positionN in the current diversion to invoke macroxx. Anotherdt will
redefine the diversion trap. If no arguments are given, the diversion trap is removed.

.it N xx - off E

Set an input-line-count trap to invoke the macroxx afterN lines of text input have been read (control
or request lines do not count). The text may be inline text or text interpolated by inline or trap-
invoked macros.

.em xx none none -

The macroxx will be invoked when all input has ended. The effect is almost as if the contents ofxx
had been at the end of the last file processed, but all processing ceases at the next page eject.

8. Number Registers

A variety of parameters are available to the user as predefinednumber registers(see Summary, page 194). In
addition, users may define their own registers. Register names are one or two characters long and do not conflict
with request, macro, or string names. Except for certain predefined read-only registers, a number register can be
read, written, automatically incremented or decremented, and interpolated into the input in a variety of formats. One
common use of user-defined registers is to automatically number sections, paragraphs, lines, etc. A number register
may be used any time numerical input is expected or desired and may be used in numericalexpressions(§1.4).

Number registers are created and modified usingnr , which specifies the name, numerical value, and the
auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence. If the registersx
andxxboth containN and have the auto-increment sizeM, the following access sequences have the effect shown:

Effect on Value

Sequence Register Interpolated___
\n x none N
\n(xx none N
\n+ x x incremented byM N+M
\n �x xdecremented byM N�M
\n+(xx xxincremented byM N+M
\n �(xx xxdecremented byM N�M___












































When interpolated, a number register is converted to decimal (default), decimal with leading zeros, lower-case
Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alphabetic according to the
format specified byaf .

.nr R ±N M - u

The number registerR is assigned the value ±N with respect to the previous value, if any. The incre-
ment for auto-incrementing is set toM.

.af R c arabic - -

- 18 -

Assign formatc to registerR. The available formats are:

Numbering
Format Sequence___

1 0, 1, 2, 3, 4, 5, ...
001 000, 001, 002, 003, 004, 005, ...

i 0, i, ii, iii, iv, v, ...
I 0, I, II, III, IV, V, ...
a 0, a, b, c, ..., z, aa, ab, ..., zz, aaa, ...
A 0, A, B, C, ..., Z, AA, AB, ..., ZZ, AAA, ...___

































An arabic format havingN digits specifies a field width ofN digits (example 2 above). The read-only
registers and the width function\w (§11.2) are always arabic. Warning: the value of a number regis-
ter in a non-arabic format is not numeric, and will not produce the expected results in expressions.

The function\g x or \g(xx returns the format of a number register in a form suitable foraf ; it returns
nothing if the register has not been used.

.rr R - ignored -

Remove number registerR. If many registers are being created dynamically, it may become necessary
to remove unused registers to recapture internal storage space for newer registers. The register.R
contains the number of number registers still available.

9. Tabs, Leaders, and Fields

9.1. Tabs and leaders.The ASCII horizontal tab character and theASCII SOH (control-A, hereafter called the
leadercharacter) can both be used to generate either horizontal motion or a string of repeated characters. The length
of the generated entity is governed by internaltab stopsspecifiable withta . The default difference is that tabs gen-
erate motion and leaders generate a string of periods;tc and lc offer the choice of repeated character or motion.
There are three types of internal tab stops�left adjusting,right adjusting, andcentering. In the following table,D is
the distance from the current position on theinput line (where a tab or leader was found) to the next tab stop,next-
string consists of the input characters following the tab (or leader) up to the next tab (or leader) or end of line, andW
is the width ofnext-string.

Tab Length of motion or Location of
type repeated characters next-string___
Left D Following D

Right D�W Right adjusted withinD
Centered D�W/2 Centered on right end ofD___




























The length of generated motion is allowed to be negative, but that of a repeated character string cannot be. Repeated
character strings contain an integer number of characters, and any residual distance is prepended as motion. Tabs or
leaders found after the last tab stop are ignored, but may be used asnext-stringterminators.

Tabs and leaders are not interpreted in copy mode.\t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair offield delimitercharacters, and consists of sub-strings separated
by paddingindicator characters. The field length is the distance on theinput line from the position where the field
begins to the next tab stop. The difference between the total length of all the sub-strings and the field length is
incorporated as horizontal padding space that is divided among the indicated padding places. The incorporated pad-
ding is allowed to be negative. For example, if the field delimiter is# and the padding indicator iŝ, #^ xxx̂ right #
specifies a right-adjusted string with the stringxxxcentered in the remaining space.

.ta Nt ... 0.8; 0.5in none E,m

Set tab stops and types.t=R, right adjusting;t=C, centering;t absent, left adjusting.Troff tab stops
are preset every 0.5in.,nroff every 0.8in. The stop values are separated by spaces, and a value pre-
ceded by+ is treated as an increment to the previous stop value.

.tc c none none E

- 19 -

The tab repetition character becomesc, or is removed, thus specifying motion.

.lc c . none E

The leader repetition character becomesc, or is removed, thus specifying motion.

.fc a b off off -

The field delimiter is set toa; the padding indicator is set to the space character or tob, if given. In
the absence of arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1. Input character translations. Ways of inputting the valid character set were discussed in §2.1. TheASCII
control characters horizontal tab (§9.1),SOH (§9.1), and backspace (§10.3) are discussed elsewhere. The newline
delimits input lines. In addition,STX, ETX, ENQ, ACK, andBEL are accepted, and may be used as delimiters or
translated into a graphic withtr (§10.5). All others are ignored.

The escapecharacter\ introducesescape sequences, which cause the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary on page 193.
The escape character\ should not be confused with theASCII control characterESC. The escape character\ can be
input with the sequence\\ . The escape character can be changed withec , and all that has been said about the
default\ becomes true for the new escape character.\e can be used to print whatever the current escape character
is. The escape mechanism may be turned off witheo , and restored withec .

.ec c \ \ -

Set escape character to\ , or toc, if given.

.eo on - -

Turn escape mechanism off.

10.2. Ligatures. The set of available ligatures is device and font dependent, but is often a subset of, , , , and .
They may be input by\(fi , \(fl , \(ff , \(Fi , and \(Fl respectively. The ligature mode is normally on in
troff, and automatically invokes ligatures during input.

.lg N on; off on -

Ligature mode is turned on ifN is absent or non-zero, and turned off ifN = 0. If N = 2, only the two-
character ligatures are automatically invoked. Ligature mode is inhibited for request, macro, string,
register, or file names, and in copy mode. No effect innroff.

10.3. Backspacing, underlining, overstriking, etc.Unless in copy mode, theASCII backspace character is replaced
by a backward horizontal motion having the width of the space character. Underlining as a form of line-drawing is
discussed in §12.4. A generalized overstriking function is described in §12.1.

Nroff automatically underlines characters in theunderline font, specifiable withuf , normally that on font
position 2. In addition toft and\f F, the underline font may be selected byul andcu . Underlining is restricted
to an output-device-dependent subset of reasonable characters.

.ul N off N = 1 E

Italicize in troff (underline innroff) the nextN input text lines. Actually, switch to underline font,
saving the current font for later restoration; other font changes within the span of aul will take effect,
but the restoration will undo the last change. Output generated bytl (§14) is affected by the font
change, but does not decrementN. If N > 1, there is the risk that a trap interpolated macro may pro-
vide text lines within the span; environment switching can prevent this.

.cu N off N = 1 E

Continuous underline. A variant oful that causeseverycharacter to be underlined innroff. Identical
to ul in troff.

.uf F Italic Italic -

Underline font set toF. In nroff, F may not be on position 1.

10.4. Control characters. Both the control character. and theno-breakcontrol character’ may be changed.
Such a change must be compatible with the design of any macros used in the span of the change, and particularly of

- 20 -

any trap-invoked macros.

.cc c . . E

The basic control character is set toc, or reset to ‘‘. ’’.

.c2 c ’ ’ E

Theno-breakcontrol character is set toc, or reset to ‘‘’ ’’.

10.5. Output translation. One character can be made a stand-in for another character usingtr . All text process-
ing (e.g., character comparisons) takes place with the input (stand-in) character which appears to have the width of
the final character. The graphic translation occurs at the moment of output (including diversion).

.tr abcd.... none - O

Translatea into b, c into d, etc. If an odd number of characters is given, the last one will be mapped
into the space character. To be consistent, a particular translation must stay in effect frominput to
outputtime.

10.6. Transparent throughput.An input line beginning with a\! is read in copy mode andtransparentlyoutput
(without the initial\!); the text processor is otherwise unaware of the line’s presence. This mechanism may be used
to pass control information to a post-processor or to embed control lines in a macro created by a diversion.

10.7. Transparent outputThe sequence\X’ anything’ copiesanythingto the output, as a device control function
of the formx X anything(§22). Escape sequences inanythingare processed.

10.8. Comments and concealed newlines.An uncomfortably long input line that must stay one line (e.g., a string
definition, or nofilled text) can be split into several physical lines by ending all but the last one with the escape\ .
The sequence\ newlineis always ignored, except in a comment. Comments may be embedded at the end of any line
by prefacing them with\" . The newline at the end of a comment cannot be concealed. A line beginning with\"
will appear as a blank line and behave like.sp 1 ; a comment can be on a line by itself by beginning the line with
.\" .

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions\v’ N’ and \h’ N’ can be used forlocal vertical and horizontal motion
respectively. The distanceN may be negative; the positive directions are rightward and downward. A local motion
is one contained within a line. To avoid unexpected vertical dislocations, it is necessary that the net vertical local
motion within a word in filled text and otherwise within a line balance to zero. The above and certain other escape
sequences providing local motion are summarized in the following table.

Vertical Effect in Horizontal Effect in

Local Motion troff nroff Local Motion troff nroff___

\v’ N ’ Move distanceN
\h’ N ’ Move distanceN

_____________________________________ \ space Unpaddable space-size space
\u ½ em up ½ line up \0 Digit-size space
\d ½ em down ½ line down______________________________________

\r 1 em up 1 line up \| 1/6 em space ignored
\^ 1/12 em space ignored

___
























































































As an example,E2 could be generated by the sequenceE\s �2\v’ �0.4m’2\v’0.4m’\s+2 ; note that the 0.4 em
vertical motions are at the smaller size.

11.2. Width Function. The width function \w’ string’ generates the numerical width ofstring (in basic units).
Size and font changes may be embedded instring, and will not affect the current environment. For example,
.ti �\w’\fB1. ’u could be used to temporarily indent leftward a distance equal to the size of the string
‘‘ 1. ’’ in font B.

The width function also sets three number registers. The registersst andsb are set respectively to the high-
est and lowest extent ofstring relative to the baseline; then, for example, the total height of the string is
\n(stu �\n(sbu . In troff the number registerct is set to a value between 0 and 3. The value 0 means that all of

- 21 -

the characters instring were short lower case characters without descenders (likee); 1 means that at least one char-
acter has a descender (likey); 2 means that at least one character is tall (likeH); and 3 means that both tall characters
and characters with descenders are present.

11.3. Mark horizontal place. The function\k x causes the current horizontal position in theinput line to be stored
in registerx. For example, the construction\kx word\h’|\nxu+3u’ word will emboldenword by backing up to
almost its beginning and overprinting it, resulting inwordword.

12. Overstrike, Bracket, Line-drawing, Graphics, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by theoverstrikefunc-
tion \o’ string’ . The characters instring are overprinted with centers aligned; the total width is that of the widest
character.string may not contain local vertical motion. As examples,\o’e\’’ produces é, and\o’\(mo\(sl’
produces ∈/ .

12.2. Zero-width characters.The function\z c will output c without spacing over it, and can be used to produce
left-aligned overstruck combinations. As examples,\z\(ci\(pl will produceË+, and\(br\z\(rn\(ul\(br
will produce a small constructed box_.
12.3. Large Brackets. The Special Font usually contains a number of bracket construction pieces
           that can be combined into various bracket styles. The function\b’ string’ may be used to

pile up vertically the characters instring (the first character on top and the last at the bottom); the characters are ver-
tically separated by 1 em and the total pile is centered 1/2 em above the current baseline (½ line innroff). For exam-
ple,

\b’\(lc\(lf’E\b’\(rc\(rf’\x’ �0.5m’\x’0.5m’

produces
E


 .

12.4. Line drawing. The function\l’ Nc’ (backslash-ell) draws a string of repeatedc’s towards the right for a
distanceN. If c looks like a continuation of an expression forN, it may be insulated fromN with a \& . If c is not
specified, the _ (baseline rule) is used (underline character innroff). If N is negative, a backward horizontal motion
of sizeN is made before drawing the string. Any space resulting fromN/(size ofc) having a remainder is put at the
beginning (left end) of the string. IfN is less than the width ofc, a singlec is centered on a distanceN. In the case
of characters that are designed to be connected, such as baseline-rule _ , under-rule _ , and root-en  , the remainder
space is covered by overlapping. As an example, a macro to underscore a string can be written

.de us
\\$1\ l ’|0\(ul’
..

or one to draw a box around a string

.de bx
\(br\|\\$1\|\(br\ l ’|0\(rn’\ l ’|0\(ul’
..

such that

.ul "underlined words"

and

.bx "words in a box"

yield underlined words______________ and words in a box_____________.

The function\L’ Nc’ draws a vertical line consisting of the (optional) characterc stacked vertically apart
1 em (1 line innroff), with the first two characters overlapped, if necessary, to form a continuous line. The default
character is thebox rule  (\(br); the other suitable character is thebold vertical  (\(bv). The line is begun
without any initial motion relative to the current baseline. A positiveN specifies a line drawn downward and a nega-
tive N specifies a line drawn upward. After the line is drawn no compensating motions are made; the instantaneous
baseline is at the end of the line.

- 22 -

The horizontal and vertical line drawing functions may be used in combination to produce large boxes. The
zero-widthbox-ruleand the ½-em wideunder-rulewere designed to form corners when using 1-em vertical spac-
ings. For example the macro

.de eb

.sp �1 \"compensate for next automatic baseline spacing

.nf \"avoid possibly overflowing word buffer
\h’-.5n’\L’|\\nau �1’\l’\\n(.lu+1n\(ul’\L’-|\\nau+1’\l’|0u-.5n\(ul’ \"draw box
.fi
..

will draw a box around some text whose beginning vertical place was saved in number registera (e.g., using
.mk a) as was done for this paragraph.
























___

12.5. Graphics. The function\D’ c...’ draws a graphic object of typec according to a sequence of parameters,
which are generally pairs of numbers.

\D’l dh dv’ draw line from current position bydh, dv
\D’c d’ draw circle of diameterd with left side at current position
\D’e d1 d2’ draw ellipse of diametersd1 andd2

\D’a dh1 dv1 dh2 dv2’ draw arc from current position todh1 + dh2, dv1 + dv2,
with center atdh1 , dv1 from current position

\D’~ dh1 dv1 dh2 dv2 ...’ draw B-spline from current position bydh1,dv1,
then bydh2 ,dv2, then bydh2 ,dv2, then ...

For example,\D’e0.2i 0.1i’ draws the ellipse , and\D’l.2i -.1i’\D’l.1i .1i’ the line .
A \D with an unknownc is processed and copied through to the output for unspecified interpretation.

Numbers taken as horizontal (first, third, etc.) have default scaling of ems; vertical numbers (second, fourth,
etc.) have default scaling ofV s (§1.3). The position after a graphical object has been drawn is at its end; for circles
and ellipses, the ‘‘end’’ is at the right side.

13. Hyphenation.

Automatic hyphenation may be switched off and on. When switched on withhy , several variants may be set.
A hyphenation indicatorcharacter may be embedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenation. In addition, the user may specify a small list of exception words.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic strings are
candidates for automatic hyphenation. Words that contain hyphens (minus), em-dashes (\(em), or hyphenation
indicator characters are always subject to splitting after those characters, whether automatic hyphenation is on or off.

.nh hyphenate - E

Automatic hyphenation is turned off.

.hy N on,N = 1 on,N = 1 E

Automatic hyphenation is turned on forN ≥ 1, or off for N = 0. If N = 2, last lines (ones that will cause
a trap) are not hyphenated. ForN = 4 and 8, the last and first two characters respectively of a word are
not split off. These values are additive; i.e.,N = 14 will invoke all three restrictions.

.hc c \% \% E

Hyphenation indicator character is set toc or to the default\%. The indicator does not appear in the
output.

.hw word ... ignored -

Specify hyphenation points in words with embedded minus signs. Versions of a word with terminals
are implied; i.e.,dig-it implies dig-its . This list is examined initially and after each suffix
stripping. The space available is small�about 128 characters.

- 23 -

14. Three-Part Titles.

The titling functiontl provides for automatic placement of three fields at the left, center, and right of a line
with a title length specifiable withlt . tl may be used anywhere, and is independent of the normal text collecting
process. A common use is in header and footer macros.

.tl ’ left’ center’ right’ - -

The stringsleft, center, andright are respectively left-adjusted, centered, and right-adjusted in the cur-
rent title length. Any of the strings may be empty, and overlapping is permitted. If the page-number
character (initially%) is found within any of the fields it is replaced by the current page number in the
format assigned to register%. Any character may be used in place of’ as the string delimiter.

.pc c % off -

The page number character is set toc, or removed. The page number register remains%.

.lt ±N 6.5 in previous E,m

Length of title is set to ±N. The line length and the title length are independent. Indents do not apply
to titles; page offsets do.

15. Output Line Numbering.

Automatic sequence numbering of output lines may be requested withnm. When in effect, a three-digit,
arabic number plus a digit-space is prepended to output text lines. The text lines are thus offset by four digit-

3 spaces, and otherwise retain their line length; a reduction in line length may be desired to keep the right margin
aligned with an earlier margin. Blank lines, other vertical spaces, and lines generated bytl are not numbered.
Numbering can be temporarily suspended withnn , or with an.nm followed by a later.nm +0 . In addition, a

6 line number indentI, and the number-text separationSmay be specified in digit-spaces. Further, it can be spec-
ified that only those line numbers that are multiples of some numberM are to be printed (the others will appear
as blank number fields).

.nm ±N M S I off E

Line number mode. If ±N is given, line numbering is turned on, and the next output line numbered is
numbered ±N. Default values areM = 1, S= 1, andI = 0. Parameters corresponding to missing argu-
ments are unaffected; a non-numeric argument is considered missing. In the absence of all arguments,
numbering is turned off; the next line number is preserved for possible further use in number register
ln .

.nn N - N = 1 E

The nextN text output lines are not numbered.

9 As an example, the paragraph portions of this section are numbered withM= 3: .nm 1 3 was placed at
the beginning;.nm was placed at the end of the first paragraph; and.nm +0 was placed in front of this para-
graph; and.nm finally placed at the end. Line lengths were also changed (by\w’0000’u) to keep the right

12 side aligned. Another example is.nm +5 5 x 3 , which turns on numbering with the line number of the next
line to be 5 greater than the last numbered line, withM = 5, with spacingSuntouched, and with the indentI set
to 3.

16. Conditional Acceptance of Input

In the following, c is a one-character built-inconditionname,! signifies not, N is a numerical expression,
string1 andstring2 are strings delimited by any non-blank, non-numeric character not in the strings, andanything
represents what is conditionally accepted.

.if c anything - -

If conditionc true, acceptanythingas input; in multi-line case use\{anything \}.

.if ! c anything- -

If conditionc false, acceptanything.

.if N anything - u

- 24 -

If expressionN > 0, acceptanything.

.if ! N anything - u

If expressionN f 0, acceptanything.

.if ’ string1’ string2’ anything -

If string1 identical tostring2, acceptanything.

.if !’ string1’ string2’ anything -

If string1not identical tostring2, acceptanything.

.ie c anything - u

If portion of if-else; all of the forms forif above are valid.

.el anything - -

Else portion of if-else.

The built-in condition names are:

Condition

Name True If____________________________________
o Current page number is odd
e Current page number is even
t Formatter istroff
n Formatter isnroff____________________________________
























If the conditionc is true, or if the numberN is greater than zero, or if the strings compare identically (including
motions and character size and font),anythingis accepted as input. If a! precedes the condition, number, or string
comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning ofanythingare skipped over. Theanythingcan be either
a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, the first line must
begin with a left delimiter\{ and the last line must end with a right delimiter\} .

The requestie (if-else) is identical toif except that the acceptance state is remembered. A subsequent and
matchingel (else) request then uses the reverse sense of that state.ie -el pairs may be nested.

Some examples are:

.if e .tl ’ Even Page %’’’

which outputs a title if the page number is even; and

.ie \n%>1 \{\
’ sp 0.5i
. tl ’Page %’’’
’ sp |1.2i \}
.el .sp |2.5i

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together into anenvironment, which
can be switched by the user. The environment parameters are those associated with requests noting E in theirNotes
column; in addition, partially collected lines and words are in the environment. Everything else is global; examples
are page-oriented parameters, diversion-oriented parameters, number registers, and macro and string definitions. All
environments are initialized with default parameter values.

.ev N N = 0 previous -

Environment switched to environment 0≤ N ≤ 2. Switching is done in push-down fashion so that
restoring a previous environmentmustbe done with.ev rather than specific reference. Note that
what is pushed down and restored is the environmentnumber,not its contents.

- 25 -

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input withrd , which will switch back when two
consecutive newlines are found (the extra blank line is not used). This mechanism is intended for insertions in
form-letter-like documentation. OnUNIX , the standard input can be the user’s keyboard, a pipe, or a file.

.rd prompt - prompt=BEL -

Read insertion from the standard input until two newlines in a row are found. If the standard input is
the user’s keyboard,prompt(or aBEL) is written onto the standard output.rd behaves like a macro,
and arguments may be placed afterprompt.

.ex - - -

Exit from nroff/troff. Text processing is terminated exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal, the com-
mand line option�q will turn off the echoing of keyboard input and prompt only withBEL. The regular input and
insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the copies in
one file to be used as the standard input, and causing the file containing the letter to reinvoke itself withnx (§19);
the process would ultimately be ended by anex in the insertion file.

19. Input/Output File Switching

.so filename - -

Switch source file. The top input (file reading) level is switched tofilename. When the new file ends,
input is again taken from the original file.so ’s may be nested.

.nx filename end-of-file -

Next file is filename. The current file is considered ended, and the input is immediately switched to
filename.

.sy string - -

Execute program fromstring, which is the rest of the input line. The output is not collected automati-
cally. The number register$$, which contains the process id of thetroff process, may be useful in
generating unique filenames for output.

.pi string - -

Pipe output tostring, which is the rest of the input line. This request must occur before any printing
occurs.

.cf filename - -

Copy contents of filefilenameto output, completely unprocessed. The file is assumed to contain
something meaningful to subsequent processes.

20. Miscellaneous

.mc c N - off E,m 
Specifies that amargincharacterc appear a distanceN to the right of the right margin after each non-
empty text line (except those produced bytl). If the output line is too long (as can happen in nofill
mode) the character will be appended to the line. IfN is not given, the previousN is used; the initial 
N is 0.2 inches innroff and 1 em introff. The margin character used with this paragraph was a 12-
point box-rule. 

.tm string - newline -

After skipping initial blanks,string (rest of the line) is read in copy mode and written on the standard
error.

.ab string - newline -

After skipping initial blanks,string (rest of the line) is read in copy mode and written on the standard
error. Troff or nroff then exit.

- 26 -

.ig yy - .yy=.. -

Ignore input lines.ig behaves exactly likede (§7) except that the input is discarded. The input is
read in copy mode, and any auto-incremented registers will be affected.

.lf N filename - -

Set line number toN and filename tof ilenamefor purposes of subsequent error messages, etc. The
number register [sic].F contains the name of the current input file, as set by command line argument,
so , nx , or lf . The number register.c contains the number of input lines read from the current file,
again perhaps as modified bylf .

.pm t - all -

Print macros. The names and sizes of all of the defined macros and strings are printed on the standard
error; if t is given, only the total of the sizes is printed. The sizes is given in blocks of 128 characters.

.fl - - B

Flush output buffer. Force output, including any pending position information.

21. Output and Error Messages.

The output fromtm , pm, and the prompt fromrd , as well as various error messages are written onto the stan-
dard error. The latter is different from the standard output, where formatted text goes. By default, both are written
onto the user’s terminal, but they can be independently redirected.

Various error conditions may occur during the operation ofnroff andtroff. Certain less serious errors having
only local impact do not cause processing to terminate. Two examples areword overflow, caused by a word that is
too large to fit into the word buffer (in fill mode), andline overflow, caused by an output line that grew too large to
fit in the line buffer. In both cases, a message is printed, the offending excess is discarded, and the affected word or
line is marked at the point of truncation with a� in nroff and a in troff. Processing continues if possible, on the
grounds that output useful for debugging may be produced. If a serious error occurs, processing terminates, and a
message is printed, along with a list of the macro names currently active. Examples of serious errors include the
inability to create, read, or write files, and the exceeding of certain internal limits that make future output unlikely to
be useful.

22. Output Language

Troff produces its output in a language that is independent of any specific output device, except that the num-
bers in it have been computed on the basis of the resolution of the device, and the sizes, fonts, and characters that
that device can print. Nevertheless it is quite possible to interpret that output on a different device, within the latter’s
capabilities.

s n set point size ton
f n set font ton
c c print ASCII characterc
Cxx print characterxx; terminatexxby white space
Nn print charactern on current font
Hn go to absolute horizontal positionn (n ≥ 0)
Vn go to absolute vertical positionn (n ≥ 0, down is positive)
hn gon units horizontally;n < 0 is to the left
v n gon units vertically;n < 0 is up
nnc move rightnn, then printASCII characterc; nnmust be exactly 2 digits
pn new pagen begins�set vertical position to 0
nb a end of line (information only�no action);b = space before line,a = after
w paddable word space (information only�no action)
Dc ...\n graphics functionc; see below
x ...\n device control functions; see below
...\n comment

All position values are in units. Sequences that end in digits must be followed by a non-digit. Blanks, tabs and new-
lines may occur as separators in the input, and are mandatory to separate constructions that would otherwise be

- 27 -

confused. Graphics functions, device control functions, and comments extend to the end of the line they occur on.

The device control and graphics commands are intended as open-ended families, to be expanded as needed.
The graphics functions coincide directly with the\D sequences:

Dl dh dv draw line from current position bydh, dv
Dc d draw circle of diameterd with left side here
De dh1 dv2 draw ellipse of diametersdh1 anddv2

Da dh1 dv1 dh2 dv2 draw arc from current position todh1 + dh2 , dv1 + dv2,
center atdh1 , dv1 from current position

D~ dh1 dv1 dh2 dv2 ... draw B-spline from current position todh1 , dv1,
then todh2 , dv2, then to ...

Dz dh1 dv1 dh2 dv2 ... for any otherz is uninterpreted

In all of these,dh, dv is an increment on the current horizontal and vertical position, with down and right positive.
All distances and dimensions are in units.

The device control functions begin withx , then a command, then other parameters.

x T s name of typesetter iss
x r n h v resolution isn units/inch; h = minimum horizontal motion,v = minimum vertical
x i initialize
x f n s mount fonts on font positionn
x p pause�can restart
x s stop�done forever
x t generate trailer information, if any
x H n set character height ton
x S n set slant ton
x X any generated by the\X function
x any to be ignored if not recognized

Subcommands like ‘‘i ’’ may be spelled out like ‘‘init ’’.

The commandsx T , x r ..., andx i must occur first; fonts must be mounted before they can be used;x s
comes last. There are no other order requirements.

The following is the output from ‘‘hello, world ’’ for a typical Postscript printer, as described in §23:

x T post
x res 720 1 1
x init
V0
p1

x font 1 R
x font 2 I
x font 3 B
x font 4 BI
x font 5 CW
x font 6 H
x font 7 HB
x font 8 HX
x font 9 S1
x font 10 S

- 28 -

s10
f1
H0
s10
f1
V0
H720
V120
ch
50e44l28l28o50,w58w72o50r33l28dn120 0
x trailer
V7920
x stop

Troff output is normally not redundant; size and font changes and position information are not included unless
needed. Nevertheless, each page is self-contained, for the benefit of postprocessors that re-order pages or process
only a subset.

23. Device and Font Description Files

The parameters that describe a output devicenameare read from the directory/usr/lib/font/dev name,
each timetroff is invoked. The device name is provided by default, by the environment variableTYPESETTER, or
by a command-line argument-T name. The default device name ispost , for Postscript. The pre-defined string.T
contains the name of the device. The-F command-line option may be used to change the default directory.

23.1. Device description file.The file DESCin /usr/lib/font/dev namecontains general parameters of the
device, one per line, as a sequence of names and values.Troff recognizes these parameters, and ignores any others
that may be present for specific drivers:

fonts n F1 F2 ... Fn

sizes s1 s2 ...0
res n
hor n
vert n
unitwidth n
charset
list of multi-character character names (optional)

The F i are font names to be initially mounted. The list of sizes is a set of integers representing some or all of the
legal sizes the device can produce, terminated by a zero. Theres parameter gives the resolution of the machine in
units per inch;hor andver give the minimum number of units that can be moved horizontally and vertically.

Character widths for each font are assumed to be given in machine units at point sizeunitwidth . (In other
words, a character with a width ofn is n units wide at sizeunitwidth .)

A list of valid character names may be introduced bycharset ; the list of names is optional.

A line whose first non-blank character is# is a comment. Except thatcharset must occur last, parameters
may appear in any order.

Here is a subset of theDESCfile for a typical Postscript printer:

- 29 -

Description file for Postscript printers.

fonts 10 R I B BI CW H HB HX S1 S
sizes 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 38 40 44 48 54 60 72 0
res 720
hor 1
vert 1
unitwidth 10
charset
hy ct fi fl ff Fi Fl dg em 14 34 12 en aa
ga ru sc dd -> br Sl ps cs cy as os =. ld
rd le ge pp -+ ob vr
sq bx ci fa te ** pl mi eq ~= *A *B *X *D
*E *F *G *Y *I *K *L *M *N *O *P *R *H *S *T *U *W
*C *Q *Z ul rn *a *b *x *d *e *f *g *y *i *k
*l *m *n *o *p *h *r *s *t *u *w *c *q *z

23.2. Font description files.Each font is described by an analogous description file, which begins with parameters
of the font, one per line, followed by a list of characters and widths. The file for fontf is
/usr/lib/font/dev name/ f.

name str name of font isstr
ligatures . . . 0 list of ligatures
spacewidth n width of a space on this font
special this is a special font
charset
list of character name, width, ascender/descender, code

The name and charset fields are mandatory;charset must be last. Comments are permitted, as are other
unrecognized parameters.

Each line followingcharset describes one character: its name, its width in units as described above,
ascender/descender information, and a decimal, octal or hexadecimal value by which the output device knows it (the
\N ‘‘number’’ of the character). The character name is arbitrary, except that--- signifies an unnamed character. If
the width field contains" , the name is a synonym for the previous character. The ascender/descender field is 1 if the
character has a descender (hangs below the baseline, likey), is 2 if it has an ascender (is tall, likeY), is 3 if both, and
is 0 if neither. The value is returned in thect register, as computed by the\w function (§11.2).

Here are excerpts from a typical font description file for the same Postscript printer.

hy 33 0 45 hyphen \(hy
- " - is a synonym for \(hy

Q 72 3 81

a 44 0 97
b 50 2 98
c 44 0 99
d 50 2 100
y 50 1 121

em 100 0 208
--- 44 2 220 English pound currency symbol \N’220’
--- 36 0 221 centered dot \N’221’

This says, for example, that the width of the lettera is 44 units at point size 10, the value ofunitwidth . Point
sizes are scaled linearly and rounded, so the width ofa will be 44 at size 10, 40 at size 9, 35 at size 8, and so on.

- 30 -

Tutorial Examples
Introduction

It is almost always necessary to prepare at least
a small set of macro definitions to describe a docu-
ment. Such common formatting needs as page mar-
gins and footnotes are deliberately not built intonroff
and troff. Instead, the macro and string definition,
number register, diversion, environment switching,
page-position trap, and conditional input mechanisms
provide the basis for user-defined implementations.

For most uses, a standard package like-ms or
-mm is the right choice. The next stage is to augment
that, or to selectively replace macros from the stan-
dard package. The last stage, much harder, is to write
one’s own from scratch.

The examples discussed here are intended to be
useful and somewhat realistic, but will not necessarily
cover all relevant contingencies. Explicit numerical
parameters are used in the examples to make them
easier to read and to illustrate typical values. In many
cases, number registers would really be used to reduce
the number of places where numerical information is
kept, and to concentrate conditional parameter initial-
ization like that which depends on whethertroff or
nroff is being used.

Page Margins

As discussed in §3, header and footer macros
are usually defined to describe the top and bottom
page margin areas respectively. A trap is planted at
page position 0 for the header, and at�N (N from the
page bottom) for the footer. The simplest such defini-
tions might be

.de hd \"define header
’sp 1i
.. \"end definition
.de fo \"define footer
’bp
.. \"end definition
.wh 0 hd
.wh -1i fo

which provide blank 1 inch top and bottom margins.
The header will occur on thefirst page, only if the
definition and trap exist prior to the initial pseudo-
page transition (§3). In fill mode, the output line that
springs the footer trap was typically forced out
because some part or whole word didn’t fit on it. If
anything in the footer and header that follows causes a
break, that word or part word will be forced out. In
this and other examples, requests likebp andsp that
normally cause breaks are invoked using the no-break
control character ’ to avoid this. When the
header/footer design contains material requiring

independent text processing, the environment may be
switched, avoiding most interaction with the running
text.

A more realistic example would be

.de hd \"header

.if \\n%>1 \{\
’sp 0.5i-1 \"tl base at 0.5i
.tl ’’- % -’’ \"centered page number
.ps \"restore size
.ft \"restore font
.vs \} \"restore vs
’sp 1.0i \"space to 1.0i
.ns \"turn on no-space mode
..
.de fo \"footer
.ps 10 \"set footer/header size
.ft R \"set font
.vs 12p \"set baseline spacing
.if \\n%=1 \{\
’sp \\n(.pu-0.5i-1 \"tl base 0.5i up
.tl ’’- % -’’ \} \"first page number
’bp
..
.wh 0 hd
.wh -1i fo

which sets the size, font, and baseline spacing for the
header/footer material, and ultimately restores them.
The material in this case is a page number at the bot-
tom of the first page and at the top of the remaining
pages. Thesp ’s refer to absolute positions to avoid
dependence on the baseline spacing. Another reason
for doing this in the footer is that the footer is invoked
by printing a line whose vertical spacing swept past
the trap position by possibly as much as the baseline
spacing. No-space mode is turned on at the end ofhd
to render ineffective accidental occurrences ofsp at
the top of the running text.

The above method of restoring size, font, etc.,
presupposes that such requests (that setprevious
value) arenot used in the running text. A better
scheme is save and restore both the currentandprevi-
ous values as shown for size in the following:

.de fo

.nr s1 \\n(.s \"current size

.ps

.nr s2 \\n(.s \"previous size

. --- \"rest of footer

..

.de hd

. --- \"header stuff

.ps \\n(s2 \"restore previous size

.ps \\n(s1 \"restore current size

..

Page numbers may be printed in the bottom margin by

- 31 -

a separate macro triggered during the footer’s page
ejection:

.de bn \"bottom number

.tl ’’- % -’’ \"centered page number

..

.wh -0.5i-1v bn \"tl base 0.5i up

Paragraphs and Headings

The housekeeping associated with starting a
new paragraph should be collected in a paragraph
macro that, for example, does the desired prepara-
graph spacing, forces the correct font, size, baseline
spacing, and indent, checks that enough space remains
for more than oneline, and requests a temporary
indent.

.de pg \"paragraph

.br \"break

.ft R \"force font,

.ps 10 \"size,

.vs 12p \"spacing,

.in 0 \"and indent

.sp 0.4 \"prespace

.ne 1+\\n(.Vu \"want more than 1 line

.ti 0.2i \"temp indent

..

The first break inpg will force out any previous par-
tial lines, and must occur before thevs . The forcing
of font, etc. is partly a defense against prior error and
partly to permit things like section heading macros to
set parameters only once. The prespacing parameter
is suitable fortroff; a larger space, at least as big as
the output device vertical resolution, would be more
suitable innroff. The choice of remaining space to
test for in thene is the smallest amount greater than
one line (the.V is the available vertical resolution).

A macro to automatically number section head-
ings might look like:

.de sc \"section

. --- \"force font, etc.

.sp 0.4 \"prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines

.fi
\\n+S.
..
.nr S 0 1 \"init S

The usage is.sc , followed by the section heading
text, followed by .pg . The ne test value includes
one line of heading, 0.4 line in the followingpg , and
one line of the paragraph text. A word consisting of
the next section number and a period is produced to
begin the heading line. The format of the number
may be set byaf (§8).

Another common form is the labeled, indented
paragraph, where the label protrudes left into the
indent space.

.de lp \"labeled paragraph

.pg

.in 0.5i \"paragraph indent

.ta 0.2i 0.5i \"label, paragraph

.ti 0
\t\\$1\t\c \"flow into paragraph
..

The intended usage is ‘‘.lp label’’; label will begin
at 0.2 inch, and cannot exceed a length of 0.3 inch
without intruding into the paragraph. The label could
be right adjusted against 0.4 inch by setting the tabs
instead with.ta 0.4iR 0.5i . The last line oflp
ends with\c so that it will become a part of the first
line of the text that follows.

Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it was
invoked by other than the last column, so that it will
begin a new column rather than produce the bottom
margin. The header can initialize a column register
that the footer will increment and test. The following
is arranged for two columns, but is easily modified for
more.

.de hd \"header

. ---

.nr cl 0 1 \"init column count

.mk \"mark top of text

..

.de fo \"footer

.ie \\n+(cl<2 \{\

.po +3.4i \"next column; 3.1+0.3

.rt \"back to mark

.ns \} \"no-space mode

.el \{\

.po \\nMu \"restore left margin

. ---
’bp \}
..
.ll 3.1i \"column width
.nr M \\n(.o \"save left margin

Typically a portion of the top of the first page con-
tains full width text; the request for the narrower line
length, as well as another.mk would be made where
the two column output was to begin.

- 32 -

Footnotes

The footnote mechanism to be described is used
by embedding the footnotes in the input text at the
point of reference, demarcated by an initial.fn and a
terminal.ef :

.fn
Footnote text and control lines...
.ef

In the following, footnotes are processed in a separate
environment and diverted for later printing in the
space immediately prior to the bottom margin. There
is provision for the case where the last collected foot-
note doesn’t completely fit in the available space.

.de hd \"header

. ---

.nr x 0 1 \"init footnote count

.nr y 0-\\nb \"current footer place

.ch fo -\\nbu \"reset footer trap

.if \\n(dn .fz \"leftover footnote

..

.de fo \"footer

.nr dn 0 \"zero last diver. size

.if \\nx \{\

.ev 1 \"expand footnotes in ev1

.nf \"retain vertical size

.FN \"footnotes

.rm FN \"delete it

.if "\\n(.z"fy" .di \"end overflow di

.nr x 0 \"disable fx

.ev \} \"pop environment

. ---
’bp
..

.de fx \"process footnote overflow

.if \\nx .di fy \"divert overflow

..

.de fn \"start footnote

.da FN \"divert (append) footnote

.ev 1 \"in environment 1

.if \\n+x=1 .fs \"if 1st, separator

.fi \"fill mode

..

.de ef \"end footnote

.br \"finish output

.nr z \\n(.v \"save spacing

.ev \"pop ev

.di \"end diversion

.nr y -\\n(dn \"new footer position,

.if \\nx=1 .nr y -(\\n(.v-\\nz) \
\"uncertainty correction

.ch fo \\nyu \"y is negative

.if (\\n(nl+1v)>(\\n(.p+\\ny) \

.ch fo \\n(nlu+1v \"didn’t fit

..

.de fs \"separator
\l’1i’ \"1 inch rule
.br
..

.de fz \"get leftover footnote

.fn

.nf \"retain vertical size

.fy \"where fx put it

.ef

..

.nr b 1.0i \"bottom margin size

.wh 0 hd \"header trap

.wh 12i fo \"footer trap->temp pos

.wh -\\nbu fx \"fx at footer position

.ch fo -\\nbu \"conceal fx with fo

The headerhd initializes a footnote count regis-
ter x , and sets both the current footer trap position
registery and the footer trap itself to a nominal posi-
tion specified in registerb. In addition, if the register
dn indicates a leftover footnote,fz is invoked to
reprocess it. The footnote start macrofn begins a
diversion (append) in environment 1, and increments
the countx ; if the count is one, the footnote separator
fs is interpolated. The separator is kept in a separate
macro to permit user redefinition.

The footnote end macroef restores the previ-
ous environment and ends the diversion after saving
the spacing size in registerz . y is then decremented
by the size of the footnote, available indn ; then on
the first footnote,y is further decremented by the dif-
ference in vertical baseline spacings of the two envi-
ronments, to prevent the late triggering the footer trap
from causing the last line of the combined footnotes to
overflow. The footer trap is then set to the lower (on
the page) ofy or the current page position (nl) plus
one line, to allow for printing the reference line.

If indicated byx , the footerfo rereads the foot-
notes fromFN in nofill mode in environment 1, and
deletesFN. If the footnotes were too large to fit, the
macro fx will be trap-invoked to redivert the

- 33 -

overflow into fy , and the registerdn will later indi-
cate to the header whetherfy is empty.

Both fo and fx are planted in the nominal
footer trap position in an order that causesfx to be
concealed unless thefo trap is moved. The footer
then terminates the overflow diversion, if necessary,
and zerosx to disablefx , because the uncertainty
correction together with a not-too-late triggering of
the footer can result in the footnote rereading finish-
ing before reaching thefx trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

The Last Page

After the last input file has ended,nroff and
troff invoke theend macro(§7), if any, and when it
finishes, eject the remainder of the page. During the
eject, any traps encountered are processed normally.
At the end of this last page, processing terminates
unless a partial line, word, or partial word remains. If
it is desired that another page be started, the end-
macro

.de en \"end-macro
\c
’bp
..
.em en

will deposit a null partial word, and produce another
last page.

- 34 -

Special Character Names
The following table lists names for a set of characters, most of which have typically been available withtroff.

Not all print on any particular device, including this one.

´ \’ µ \(*m C \(|=
` \‘ ν \(*n ∼ \(ap
� \(em ξ \(*c ` \(!=
- \- ο \(*o � \(->
- \(hy π \(*p � \(<-
� \- ρ \(*r � \(ua
� \(bu σ \(*s � \(da
¡ \(sq ς \(ts × \(mu
_ \(ru τ \(*t ÷ \(di
¼ \(14 υ \(*u ± \(+-
½ \(12 φ \(*f * \(cu
¾ \(34 χ \(*x) \(ca

\(fi ψ \(*q � \(sb
\(fl ω \(*w � \(sp
\(ff Α \(*A � \(ib
\(Fi Β \(*B � \(ip
\(Fl Γ \(*G � \(if

° \(de ∆ \(*D � \(pd
 \(dg Ε \(*E � \(gr
′ \(fm Ζ \(*Z ¬ \(no
¢ \(ct Η \(*Y + \(is
® \(rg Θ \(*H � \(pt
© \(co Ι \(*I � \(es
+ \(pl Κ \(*K ∈ \(mo
− \(mi Λ \(*L  \(br
= \(eq Μ \(*M ! \(dd
� \(** Ν \(*N \(rh
§ \(sc Ξ \(*C \(lh
´ \(aa Ο \(*O \(bs
` \(ga Π \(*P | \(or
_ \(ul Ρ \(*R Ë \(ci
/ \(sl Σ \(*S  \(lt
α \(*a Τ \(*T  \(lb
β \(*b Υ \(*U  \(rt
γ \(*g Φ \(*F  \(rb
δ \(*d Χ \(*X  \(lk
ε \(*e Ψ \(*Q  \(rk
ζ \(*z Ω \(*W  \(bv
η \(*y � \(sr  \(lf
θ \(*h  \(rn  \(rf
ι \(*i g \(>=  \(lc
κ \(*k f \(<=  \(rc
λ \(*l a \(==

