Troff User's Manual

Joseph F. Ossanna
Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

Troff andnroff are text processors that format text for typesetter- and typewriter-like terminals, respectively.
They accept lines of text interspersed with lines of format control information and format the text into a printable,
paginated document having a user-designed sfjteff andnroff offer unusual freedom in document styling: arbi-
trary style headers and footers; arbitrary style footnotes; multiple automatic sequence numbering for paragraphs, sec-
tions, etc; multiple column output; dynamic font and point-size control; arbitrary horizontal and vertical local
motions at any point; and a family of automatic overstriking, bracket construction, and line-drawing functions.

Troff produces its output in a device-independent form, although parameterized for a specific teffioet-
put must be processed by a driver for that device to produce printed output.

Troff andnroff are highly compatible with each other and it is almost always possible to prepare input accept-
able to both. Conditional input is provided that enables the user to embed input expressly destined for either pro-
gram. Nroff can prepare output directly for a variety of terminal types and is capable of utilizing the full resolution
of each terminal. A warning for the future, howeveroff is near the end of its useful life, and it is not supported or
maintained. There has been no attempt to add moadffeatures taroff .

Background to the Second Edition

Troff was originally written by the late Joe Ossanna in about 1973, in assembly language #orttik to
drive the Graphic Systems CAT typesetter. It was rewritten in C around 1975, and underwent slow but steady evo-
lution until Ossanna’s death late in 1977.

In 1979, Brian Kernighan modifiettoff so that it would produce output for a variety of typesetters, while
retaining its input specifications. Over the decade from 1979 to 1989, the internals have been modestly revised,
though much of the code remains as it was when Ossanna wrote it.

Troff reads parameter files each time it is invoked, to set values for machine resolution, legal type sizes and
fonts, and character names, character widths and the Tikaff output isascil characters in a simple language that
describes where each character is to be placed and in what size and font. A post-processor must be written for each
device to convert this typesetter-independent language into specific instructions for that device.

The output language contains information that was not readily identifiable in the older output. Most notably,
the beginning of each page and line is marked, so post-processors can do device-specific optimizations such as sort-
ing the data vertically or printing it boustrophedonically, independembbf

Capabilities for graphics have been addéaff now recognizes commands for drawing diagonal lines, cir-
cles, ellipses, circular arcs, and quadratic B-splines; there are also ways to pass arbitrary information to the output
unprocessed hiyoff.

A number of limitations have been eased or eliminated. A document may have an arbitrary number of fonts
on any page (if the output device permits it, of course). Fonts may be accessed merely by naming them; “mount-
ing” is no longer necessary. There are no limits on the number of charactetsacter heighandslant may be set

tThis is a version dffeference(v7man troff reference) revised by B. W. Kernighan.

independently of width.

The remainder of this document contains a description of usage and command-line options; a summary of
requests, escape sequences, and pre-defined number registers; a reference manual; tutorial examples; and a list of
commonly-available characters.

Acknowledgements

Joe Ossanna'soff remains a remarkable accomplishment. For fifteen years, it has proven a robust tool, tak-
ing unbelievable abuse from a variety of preprocessors and being forced into uses that were never conceived of in
the original design, all with considerable grace under fire.

The current version ofroff has profited from significant code improvements by Jaap Akkerhuis, Dennis
Ritchie, Ken Thompson, and Molly Wagner. Andrew Hume, Doug Mcllroy, and Ravi Sethi made valuable sugges-
tions on the manual. | fear that the remaining bugs are my fault.

References
[referenceplacement

Usage
Troff or nroffis invoked as

troff options files
nroff options files

whereoptionsrepresents any of a number of option arguments fded represents the list of files containing the
document to be formatted. An argument consisting of a single miius taken to be a filename corresponding to

the standard input. If no filenames are given input is taken from the standard input. The options, which may appear
in any order so long as they appear before the files, are:

-mname Read the macro filéusr/lib/tmac. namebefore the inputiles.

-T name Specifies the type of the output device. Specific devices are site-dependent. For
troff, useful names includpost (Postscript, the default02 (Linotron 202),
and aps (Autologic APS-5). Fornroff , useful names includg7 for the
(default) Model 37 Teletype®450 for the DASI-450 (Diablo Hyterm),Ip for
“dumb” line printer terminals (no half-line motions, no reverse motions, and
think for the HP ThinkJet printer.

-i Read standard input after the input files are exhausted.

-0 list Print only pages whose page numbers appedisinwhich consists of comma-
separated numbers and number ranges. A number range has the fdvhand
means pages throughM; a initial =N means from the beginning to pageand
a finalN — means fronN to the end.

-n N Number first generated palje
-r aN Set number register(one-character) thl.
-s N Stop everyN pages. Nroff will halt prior to everyN pages (defaulN =1) to

allow paper loading or changing, and will resume upon receipt of a newline.
Troff will include a “pause” code ever\N pages; its meaning, if any, depends
on the output device.

-u N Set amount of emboldening for thd request ta\.
-F path Look in directorypath for font information; default iusr/lib/font for
troff and/usr/lib/term for nroff.

troff Only

-a Send a printablASCIl) approximation of the results to the standard output.
nroff Only

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

-h Use tabs instead of spaces to speed up printing.

-q Invoke the simultaneous input-output mode of ttherequest.

Each option is a separate argument; for example,
troff -Tpost -ms -04,6,8-10 filel file2

requests formatting of pages 4, 6, and 8 through 10 of a document contained in the filesfil@inaddfile 2, spec-
ifies the output device as a Postscript printer, and invokes the macro pankage

Various pre- and post-processors are available for usenwitfi andtroff. These include the equation prepro-
cessoreqn (for troff only), the table-construction preprocessbl; and pic, ideal, and grap for various forms of
graphics. A reverse-line postprocessml is available for multiple-colummroff output on terminals without
reverse-line abilitycol expects the Model 37 Teletype escape sequenceawdifigiroduces by default.

-4 -

Request Summary

In the following table, the notation in the Request Formcolumn means that the fornd +N, or —N are
permitted, to set the parameterNp increment it byN, or decrement it byN, respectively. PlailN means that the
value is used to set the parametémitial Values separated by are fortroff andnroff respectively. In théNotes
column,

B Request normally causes a break. The use af control character (instead of
.) suppresses the break function.

Mode or relevant parameters associated with current diversion level.
Relevant parameters are a part of the current environment.

Must stay in effect until logical output.

40T OmOQo

V,p,m,u

Mode must be still or again in effect at the time of physical output.
troff only; no effect imroff.
Default scale indicator; if not specified, scale indicators are ignored.

Request Initial If No

Form Value Argument Notes Explanation

1. General Information

2. Font and Character Size Control

ps+ N 10 point previous ET Point size; als$® +N.

ss N 12/36m ignored ET Space-character size seii86 em.

cs FNM off - PT Constant character space (width) mode (font

bd F N off - P,T Embolden fonE by N -1 units.

.bdS F N off - P,T Embolden Special Font when current fonFis

ft F Roman previous E Change to fdatalso\f x, \f(xx \f N.

fp N FL R,IB,....S ignored - Mount font naméton physical positiolN = 1;
long name id. if given.

3. Page Control

pl+ N 11i 11i v Page length.

bpt N N=1 - Byv Eject current page; next page numbér

.pnt N N=1 ignored - Next page numbatk

.pox N 1i; 0 previous v Page offset.

.ne N - N=1v Dyv NeedN vertical space.

.mk R none internal D Mark current vertical place in regidger

atx N none internal Dy Return (upward only) to marked vertical place.

4. Text Filling, Adjusting, and Centering

.br - - B Break.

fi fill - B,E Fill output lines.

.nf fill - B,E No filling or adjusting of output lines.

.ad ¢ adj, both adjust E Adjust output lines with modec=1,r ,c,b,none

.na adjust - E No output line adjusting.

.ce N off N=1 B.,E Center nexi input text lines.

5. Vertical Spacing

.vs N 12p; 1/6i previous 53] Vertical baseline spacingj.

Is N N=1 previous E Outpull — 1 v's after each text output line.

sp N - N=1v Byv Space vertical distandg in either direction.

sv N - N=1v v Save vertical distands.

.0s - - - Output saved vertical distance.

.ns space - D Turn no-space mode on.

.rs - - D Restore spacing; turn no-space mode off.

6. Line Length and Indenting

M+ N 6.5i previous Em Line length.

int N N=0 previous B,Bn Indent.

tix N - ignored B,BEln Temporary indent.

7. Macros, Strings, Diversion, and Position Traps

Define or redefine macrex; end at call ofyy.
Append to a macro.

Define a stringx containingstring.
Appendgtring to stringxx.

Remove request, macro, or string.
Rename request, macro, or stomgo yy.
Divert output to macrex.

Divert and append o
Set location trap; negative is w.r.t. page bottom.
Change trap location.
Set a diversion trap.
Set an input-line count trap.

End macro i

Define and set number regist@r auto-increment byu.
Assign format to regist®&(c=1,i ,I ,a,A).
Remove registeR.

Tab settings; left-adjusting, unless R (right), C (centered).
Tab repetition character.
Leader repetition character.

Set field delimitera and pad charactdr.

Set escape character.

Turn off escape character mechanism.
Ligature mode on ¥l >0.

Underline (italicize irtroff) N input lines.
Continuous underline inroff; in troff, like ul .
Underline font set td (to be switched to byl).
Set control character ©

Set no-break control characterdo

.de xx yy - LYY= -
.am xx yy - yy=.. -
.ds xx string - ignored -
.as xx string - ignored -
.rm- xx - ignored -
mooxx yy - ignored -
di xx - end D
.da xx - end D
wh N xx - - v
.ch xx N - - v
dt N xx - off D,v
qt N xx - off E
.em xx none none -
8. Number Registers

nr R N M - u
af R ¢ arabic - -
R - - -
9. Tabs, Leaders, and Fields

fa Nt ... 0.5i; 0.8n none En
fIc c none none E
e ¢ . none E
fc ab off off -
10. Input and Output Conventions and Character Translations
.ec ¢ \ \ -
.e0 on - -
dg N on; - on T
ul N off N=1 E
.cu N off N=1 E
uf F Italic Italic -
.cc ¢ E
c2 ¢ ’ ' E
Ar abcd... none - o

Translatato b, etc., on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line-drawing, Graphics, and Zero-width Functions

13. Hyphenation.

.nh hyphenate - E
.hy N hyphenate hyphenate E
.hc ¢ \% \% E
.hw word ignored -
14. Three-Part Titles.

A et - -
.pc ¢ % off -
dt+ N 6.5i previous Em
15. Output Line Numbering.

.nm+ NMS| off E
.nn N - N=1 E
16. Conditional Acceptance of Input

if ¢ any - -
if! ¢ any - -

if N any - u
dfl N any - u

if - 's1's2' any -
f! 's1's2' any - -

No hyphenation.
Hyphenates mode.
Hyphenation indicator character
Add words to hyphenation dictionary.

Three-part title; delimiter may be any character.
Page number character.
Length of title.

Number mode on or off, set parameters.
Do not number nextl lines.

If condition ¢ true, accepanyas input;
for multi-line, use\{ any\} .

If condition c false, accepany.

If expressiorN >0, acceptny.

If expressiorN=0 [sic], accepany.

If string s1 identical tos2, acceptany.

If string s1 not identical tas2, accepany.

.ie ¢ any - u If portion of if-else; all above forms (likéf).
.el any - - Else portion of if-else.

17. Environment Switching
.ev N N=0 previous

Environment switch (push down).

18. Insertions from the Standard Input

.rd prompt - promptBEL - Read insertion.

.ex - - - Exit.

19. Input/Output File Switching

.so filename - - Switch source file (push down).

.nx filename end-of-file - Next file.

.Sy string - - Execute prograrstring. Output is not interpolated.
.pi string - - Pipe output to prograrstring.

.cf filename - - Copy file contents tdroff output.

20. Miscellaneous

.mc ¢ N - off E,m Set margin characterand separatiof\.

.tm string - newline - Printstring on terminal (standard error).

.ab string - newline - Printstring on standard error, exit program.

ig o yy - LYY= - Ignore input until call ofyy.

f N f - - Set input line number tdl and filename td.

.pm t - all - Print macro names, sizesiipresent, print only total of sizes.
Al - - B Flush output buffer.

21 Output and Error Messages
22. Output Language

23. Device and Font Description Files

Alphabetical Request and Section Number Cross Reference

ab 20 ce 4 ec 10 ft 2 lg 10 nh 13 pm 20 so 19 tr 10
ad 4 cf 19 el 16 hc 13 If 20 nm 15 pn 3 sp 5 uf 10
af 8 ch 7 em 7 hw 13 I 6 nn 15 po 3 ss 2 ul 10
am 7 cs 2 eo 10 hy 13 Is 5 nr 8 ps 2 sv 5 vs 5
as 7 cu 10 ev 17 ie 16 It 14 ns 5 rd 18 sy 19 wh 7
bd 2 da 7 ex 18 if 16 mc 20 nx 19 m 7 ta 9
bp 3 de 7 fc 9 ig 20 mk 3 os 5 m 7 tc 9
br 4 d 7 fii 4 in 6 na 4 pc 14 8 ti 6
c2 10 ds 7 fl. 20 it 7 ne 3 pi 19 rs 5 t 14
cc 10 dat 7 fp 2 Ic 9 nf 4 pl 3 rt 3 tm 20

-7-

Escape Sequences for Characters, Indicators, and Functions

Section

Escape

Reference Sequence

10.1
10.1
2.1
2.1
21
7.
111
111
111
111
4.1
10.6
10.8
13.
21
7.1
7.3
9.1
12.3
4.2
21
111
12.5
2.2

111
2.3
11.3
12.4
12.4
8.
2.1
121
41
111
2.3
2.2
9.1
111
111
11.2
5.2
10.7
12.2
16.
16.
10.8

The escape sequendes \. ,\" ,\$,* \a ,\n,\t ,\g, and\ newlineare interpreted in copy mode (§7.2).

\

\e

\

\

\ -

\.

\ space
\0

\l

\/\

\&

\!

\"

\%

\(xx
* x, \¥(xx
\$ N

\a

\b’ abc..
\c

\C' xyZ
\d

\D’ c...

\f x, f(xx, \f N

\g X, \g(xx
\h" N

\H' N

\k x

\I' Nc

\L" Nc

\n x, \n(xx
N N

\o’ abc.’
\p

\r

\s N, \s+ N
\S' N

\t

\u

W N
\w’ string
X' N
\X' string
\z ¢

\

\}

\ newline
\z

Meaning

\ prevents or delays the interpretation\of

Printable version of the current escape character.
" (acute accent); equivalent f@@a

* (grave accent); equivalent ¥ga

- Minus sign in the current font

Period (dot) (sede)

Unpaddable space-size space character

Digit width space

1/6 em narrow space character (zero widthiaoff)
1/12 em half-narrow space character (zero widthrioif)
Non-printing, zero width character

Transparent line indicator

Beginning of comment; continues to end of line
Default optional hyphenation character
Character namexix

Interpolate stringc or xx

Interpolate argumentIN=9

Non-interpreted leader character

Bracket building function

Connect to next input text

Character namexyz

Downward 1/2 em vertical motion (1/2 line mroff)
Draw graphics functior with parameters..;c=1 ,c,e,a,~
Change to font namedor xx, or positionN

Format of number registeror xx

Local horizontal motion; move right (negative left)
Height of current font i\

Mark horizontal input place in registar

Horizontal line drawing function (optionally with)
Vertical line drawing function (optionally witia)
Contents of number registgior xx

Character numbeX on current font

Overstrike charactems, b, c, ...

Break and spread output line

Reverse 1 em vertical motion (reverse linenoff)
Point-size change function; alss(nn,\s £(nn
Slant outpulN degrees

Non-interpreted horizontal tab

Reverse (up) 1/2 em vertical motion (1/2 lineriroff)
Local vertical motion; move down N (negative up)
Width of string

Extra line-space function (negative before, positive after)
Ouputstring as device control function

Print c with zero width (without spacing)

Begin conditional input

End conditional input

Concealed (ignored) newline

Z, any character not listed above

Section
Reference

3.
11.2

7.4

7.4

15.
4.1

11.2

11.2

Section
Reference

19.
7.3
5.2
2.3

20.
7.4
2.2

20.
4.

111
6.
4.2
4.1
6.
51
4.
3.
3.
7.5

2.3

Register
Name

%
ct
dl
dn
dw
dy
In
mo
nl
sb
st

yr

Register
Name

N<Xxs<<erbHmydbosSir—x—=TSm=aoo>bof

-8-

Predefined Number Registers

Description

Current page number.

Character type (set By function).

Width (maximum) of last completed diversion.

Height (vertical size) of last completed diversion.
Current day of the week (1-7).

Current day of the month (1-31).

Output line number.

Current month (1-12).

Vertical position of last printed text baseline.

Depth of string below baseline (generatedwyfunction).
Height of string above baseline (generatedwyfunction).
Last two digits of current year.

Predefined Read-Only Number Registers

Description

Process id ofroff or nroff.

Number of arguments available at the current macro level.
Post-line extra line-space most recently usetkin N’ .

Set to 1 introff, if —a option used; always 1 inroff.
Emboldening level.

Number of lines read from current input file.

Current vertical place in current diversion; equahlo, if no diversion.
Current font number.

Current input file name [sic].

Text baseline high-water mark on current page or diversion.
Available horizontal resolution in basic units.

Current indent.

Currentad mode.

Current output horizontal position.

Current line length.

Currentls value.

Length of text portion on previous output line.

Current page offset.

Current page length.

Number of unused number registers.

Set to 1 innroff, if -T option used; always O itvoff.

Current point size.

Distance to the next trap.

Equal to 1 in fill mode and 0 in nofill mode.

Current vertical line spacing.

Available vertical resolution in basic units.

Width of previous character.

Reserved version-dependent register.

Reserved version-dependent register.

Name [sic] of current diversion.

-9-

Reference Manual

1. General Explanation

1.1. Form of input. Input consists ofext lines which are destined to be printed, interspersed wihtrol lines

which set parameters or otherwise control subsequent processing. Control lines begircaithohcharacter—

normally. (period) or’ (single quote)-followed by a one or two character name that specifies a lvagicestor

the substitution of a user-definedacroin place of the control line. The control charactesuppresses thiereak
function—the forced output of a partially filled line-caused by certain requests. The control character may be sep-
arated from the request/macro name by white space (spaces and/or tabs) for aesthetic reasons. Names should be fol-
lowed by either space or newline. Control lines with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by meansestapecharacter, normally
\. For example, the functioln R causes the interpolation of the contents of tisenber register Rn place of the
function; hereRis either a single character name a®i®, or a two-character name introduced by a left-parenthesis,
as in\n(xx

1.2. Formatter and device resolutionTroff internally stores and processes dimensions in units that correspond to
the particular device for which output is being prepared; values from 300 to 1200/inch are typical. Sédér&f23.
internally uses 240 units/inch, corresponding to the least common multiple of the horizontal and vertical resolutions
of various typewriter-like output deviceslroff rounds horizontal/vertical numerical parameter input to the actual
horizontal/vertical resolution of the output device indicated by-Theoption (defaulpost). Nroff similarly rounds
numerical input to the actual resolution of its output device (default Model 37 Teletype).

1.3. Numerical parameter input. Both nroff andtroff accept numerical input with the appended scale indicators
shown in the following table, wher8is the current type size in points aivis the current vertical line spacing in
basic units.

Hndicator U Meaning

]

i nlnch
C O Centimeter

P OPica = 1/6 inch
m UEm =Spoints

n Uen = Emi2

p nPoint = 1/72 inch
u OBasic unit
OVertical line spac®’ U
H none H Default, see below H

OooooOooooom
Ooooooogoooono

<

In nroff, both the em and the en are taken to be equal to the nominal character width, which is output-device depen-
dent; common values are 1/10 and 1/12 inch. Actual character widthefiineed not be all the same and con-
structed characters such as (—) are often extra wide. The default scalingnsfor the horizontally-oriented
requests and functiorls , in ,ti ,ta,It , po, mc \h ,\l , and horizontal coordinates @b ; v for the vertically-
oriented requests and functiopk, wh, ch, dt , sp, sv, ne, rt ,\v ,\x ,\L , and vertical coordinates &D ; p for

thevs request; and for the requestsr , if , andie . All other requests ignore any scale indicators. When a num-

ber register containing an already appropriately scaled number is interpolated to provide numerical input, the unit
scale indicatou may need to be appended to prevent an additional inappropriate default scaling. The mMimber,
may be specified in decimal-fraction form but the parameter finally stored is rounded to an integer number of basic
units. Internal computations are performed in integer arithmetic.

The absolute positionndicator| may be prepended to a numbéto generate the distance to the vertical or
horizontal placeN. For vertically-oriented requests and functiohsl becomes the distance in basic units from the
current vertical place on the page or irdizersion(§7.4) to the vertical placdl. Forall other requests and func-
tions, | N becomes the distance from the current horizontal place oinfhé line to the horizontal placél. For
example,

.Sp [3.2¢

will space in the required direction to 3.2 centimeters from the top of the page.

-10 -

1.4. Numerical expressionsWherever numerical input is expected an expression involving parentheses, the arith-
metic operators, -,/ , *, %(mod), and the logical operatoss >, <=, >=, = (or ==), & (and),: (or) may be used.

Except where controlled by parentheses, evaluation of expressions is left-to-right; there is no operator precedence.
In the case of certain requests, an initiabr - is stripped and interpreted as an increment or decrement indicator
respectively. In the presence of default scaling, the desired scale indicator must be attaslergiiamber in an
expression for which the desired and default scaling differ. For example, if the number registgiains 2 and the

current point size is 10, then

Al (4.25i+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 3 ems.

1.5. Notation. Numerical parameters are indicated in this manual in two way$.means that the argument may

take the formd\, + N, or —N and that the corresponding effect is to set the paramebgrttoincrement it by, or to
decrement it byN respectively. PlaitN means that an initial algebraic signrist an increment indicator, but merely

the sign ofN. Generally, unreasonable numerical input is either ignored or truncated to a reasonable value. For
example, most requests expect to set parameters to non-negative values; excepspnssxech, nr, andif .

The requestsgs, ft , po,vs,Is ,Il ,in, andlt restore the previous parameter value in the absence of an argu-
ment.

Single character arguments are indicated by single lower case letters and one/two character arguments are
indicated by a pair of lower case letters. Character string arguments are indicated by multi-character mnemonics.

2. Font and Character Size Control

2.1. Character set. The troff character set is defined by a description file specific to each output device (823).
There are normally several regular fonts and one or more special fonts. Characters are input as thexasejyes (
as\(xx, as\C' namée , oras\N' n' . The form\C’ namé permits a name of any length; the fokld’ n’ refers

to then-th character on the current font, whether named or not.

Normally the input characters, ‘ , and- are printed as ‘, ', and - respectively; ,\' , and\- produce ", °,
and-. Non-existent characters are printed as a 1-em space.

Nroff has an analogous, but different, mechanism for defining legal characters and how to print them. By
default allASCII characters are valid. There are such additional characters as may be available on the output device,
such characters as may be able to be constructed by overstriking or other combination, and those that can reasonably
be mapped into other printable characters. The exact behavior is determined by a driving table prepared for each
device.

2.2. Fonts. Troff begins execution by reading information for a set of defaults fonts, said modogted conven-
tionally, the first four are Times Romam), Times Italic(l), Times Bold (B), andTimes Bold Italic(Bl) , and the

last is a Special fontS) containing miscellaneous characters. These fonts are used in this document. The set of
fonts and positions is determined by the device description file, described in §23.

The current font, initially Roman, may be changed by use offtheequest, or by embedding at any desired
point eithenf x,\f(xx or\f N, wherex andxxare the name of a font ahtis a numerical font position.

It is not necessary to change to the Special font; characters on that font are automatically handled as if they
were physically part of the current font. The Special font may actually be several fonts; theSnameserved and
is generally used for one of these. All special fonts must be mounted after regular fonts.

Troff can be informed that any particular font is mounted by use ofgheequest. The list of known fonts is
installation dependent. In the subsequent discussion of font-related reduesisesents either a one/two-character
font name or the numerical font position. The current font is available (as a numerical position) in the read-only
number registerf .

A request for a named but not-mounted font is honored if the font description information exists. In this way,
there is no limit on the number of fonts that may be printed in any part of a document. Mounted fonts may be han-
dled more efficiently, and they may be referred to by their mount positions, but there is no other difference.

The function\S't N’ causes the current font to be slanted bydegrees. Not all devices support slanting.

-11 -

Nroff understands font control and normally underlines italic characters (see 810.5).

2.3. Character size.Character point sizes available depend on the specific output device; a typical (historical) set
of valuesis 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to 1/2 inpk. The
request is used to change or restore the point size. Alternatively the point size may be changed between any two
characters by embedding ¥ N at the desired point to set the size M, or a \sxt N (1<N<9) to
increment/decrement the size bBly \sO restores the previous size. Requested point size values that are between
two valid sizes yield the larger of the two.

Note that through an accident of history, a construction\§89 is parsed as size 39, and thus converted to
size 36 (given the sizes above), whigl0 is parsed as size 4 followed 1y The syntax\s(nnand\s +£(nn
permits specification of sizes that would otherwise be ambiguous.

The current size is available in tige register. Nroff ignores type size requests.

The functionH'+ N setsthe height of the current ford N, or increments it by N, or decrements it by N;
if N=0, the height is restored to the current point size. In each case, the width is unchanged. Not all devices sup-
port independent height and width for characters.

Request Initial If No
Form Value Argument Notes
ps N* 10 point previous E

Point size set to M. Alternatively embeds N or\s+ N. Any positive size value may be requested,;
if invalid, the next larger valid size will result, with a maximum of 36. A paired sequeride—N
will work because the previous requested value is also remembered. Igniorefd. in

.Sss N 12/36em ignored E

Space-character size (i.e., inter-word gap) is s&/85 ems. This size is the minimum word spacing
in adjusted text. Ignored mroff.

.cs FNM off - P

Constant character space (width) mode is set on forFofit mounted); the width of every character

will be taken to beN/36 ems. IfM is absent, the em is that of the character’s point sizg, i§ given,

the em isM points. All affected characters are centered in this space, including those with an actual
width larger than this space. Special Font characters occurring while the current Foatésalso so
treated. IfN is absent, the mode is turned off. The mode must be in effect when the characters are
physically printed. Ignored inroff.

.bd FN off - P

The characters in fori will be artificially emboldened by printing each one twice, separateN byl
basic units. A reasonable value fris 3 when the character size is near 10 pointsN I§ missing
the embolden mode is turned off. The emboldening Vdlisein the.b register.

This paragraph is printed with R 3. The mode must be in effect when the charaxters ar
physically printed. Ignorediroff.

bdS FN off - P

The characters in the Special font will be emboldened whenever the current fanTise mode must
be in effect when the characters are physically printed. Ignoneaif

ft F Roman previous E

Font changed td-. Alternatively, embedf F. The font nameP is reserved to mean the previous
font, and the nam® for the special font.

fp NFL R,B,...,.S ignored -
Font position. This is a statement that a font narRed associated with positioN. It is a fatal error

if F is not known. For fonts with names longer than two charactersfers to the long name, arkd
becomes a synonym. There is generally a limit of about 10 mounted fonts.

*The fields have the same meaning as described earlier in the Request Summary.

-12 -

3. Page control

Top and bottom margins are not automatically provided; it is conventional to definenfwenosand to set
traps for them at vertical positions O (top) ardN (distanceN up from the bottom). See §7 and Tutorial Examples
8T2. A pseudo-page transition onto the first page occurs either when theriatoccurs or when the firston-
divertedtext processing occurs. Arrangements for a trap to occur at the top of the first page must be completed
before this transition. In the following, references to therent diversion(§7.4) mean that the mechanism being
described works during both ordinary and diverted output (the former considered as the top diversion level).

The limitations ortroff andnroff output dimensions are device dependent.

.pl =N 11in 11in Y
Page length set to: The current page length is available in fheregister.
.bp =N N=1 - Byv

Begin page. The current page is ejected and a new page is beguN.idfgiven, the new page num-
ber will be #N. Also see requesis.

.pn =N N=1 ignored -

Page number. The next page (when it occurs) will have the page nunftbeA+pn must occur
before the initial pseudo-page transition to affect the page number of the first page. The current page
number is in théeregister.

.po =N 1in; 0 previous Y

Page offset. The curreteft marginis set to #\. Thetroff initial value provides 1 inch of paper mar-
gin on a typical device. The current page offset is available imthregister.

.ne N - N=1V Dyv

NeedN vertical space. If the distand2 to the next trap position (see §7.5) is less thara forward
vertical space of sizB occurs, which will spring the trap. If there are no remaining traps on the page,
D is the distance to the bottom of the pageDI& V, another line could still be output and spring the
trap. In a diversionD is the distance to thdiversion trap if any, or is very large.

.mk R none internal D

Mark the current vertical place in an internal register (both associated with the current diversion
level), or in registeR, if given. Seet request.

N\ none internal Dy

Returnupward onlyto a marked vertical place in the current diversion. N fwith respect to current
place) is given, the place isN:from the top of the page or diversion or,Nf is absent, to a place
marked by a previousik Thesp request (85.3) may be used in all cases insteatl dfy spacing to
the absolute place stored in a explicit register, e.g., using the sequekcRsp [\n Ru; this
also works when the motion is downwards.

4. Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a output text
line until some word does not fit. An attempt is then made to hyphenate the word to put part of it into the output
line. The spaces between the words on the output line are then increased to spread out the line to tHmeurrent
length minus any currenindent A word is any string of characters delimited by tlspacecharacter or the
beginning/end of the input line. Any adjacent pair of words that must be kept together (neither split across output
lines nor spread apart in the adjustment process) can be tied together by separating themunijpaddable space
character ¥ " (backslash-space). The adjusted word spacings are unifortrofhand the minimum interword
spacing can be controlled with tiss request (82). Imroff, they are normally nonuniform because of quantization

to character-size spaces; however, the command line oiarauses uniform spacing with full output device reso-
lution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The text length on the last line
output is available in then register, and text baseline position on the page for this line is imithesgister. The

text baseline high-water mark (lowest place) on the current page is ih thegister. The current horizontal output
position is in thek register.

-13 -

An input text line ending with , ?, or! , optionally followed by any number &f,” ,),],*, or 1, is taken to
be the end of a sentence, and an additional space character is automatically provided during filling. To prevent this,
add\& to the end of the input line. Multiple inter-word space characters found in the input are retained, except for
trailing spaces; initial spaces also cause a break.

When filling is in effect, dp may be embedded or attached to a word to cause a break at the end of the word
and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made not to look like a control line by
prefixing it with the non-printing, zero-width filler characte . Still another way is to specify output translation of
some convenient character into the control character trsig§10.5).

4.2. Interrupted text. The copying of a input line imofill (non-fill) mode can be interrupted by terminating the
partial line with a\c . The next encountered input text line will be considered to be a continuation of the same line
of input text. Similarly, a word withirfilled text may be interrupted by terminating the word (and line) Wath the

next encountered text will be taken as a continuation of the interrupted word. If the intervening control lines cause a
break, any partial line will be forced out along with any partial word.

.br - - B

Break. The filling of the line currently being collected is stopped and the line is output without
adjustment. Text lines beginning with space characters (but not tabs) and empty text lines (blank
lines) also cause a break.

fi fill on - B.E
Fill subsequent output lines. The registeris 1 in fill mode and 0 in nofill mode.
.nf fill on - B.E

Nofill. Subsequent output lines are neither filled nor adjusted. Input text lines are copied directly to
output lines without regard for the current line length.

.ad ¢ adj, both adjust E

Line adjustment is begun. If fill mode is not on, adjustment will be deferred until fill mode is back
on. If the type indicatoc is present, the adjustment type is changed as shown in the following table.

Ondicator O Adjust Type O

E I LIadjust left margin only 0
o r madjust right margin only

O ¢ ocenter 0
O born Oadjust both margins 0O
H absent H unchanged H

The number registej contains the current value of tlal setting; its value can be recorded and
used subsequently to set adjustment.

.na adjust - E

Noadjust. Adjustment is turned off; the right margin will be ragged. The adjustment tyze foe
not changed. Output line filling still occurs if fill mode is on.

.ce N off N=1 B.E

Center the nexN input text lines within the current available horizontal space (line-length minus
indent). IfN =0, any residual count is cleared. A break occurs after each dfithput lines. If the
input line is too long, it will be left adjusted.

5. Vertical Spacing

5.1. Baseline spacing.The vertical spacing\() between the baselines of successive output lines can be set using
thevs request.V should be large enough to accommodate the character sizes on the affected output lines. For the
common type sizes (9-12 points), usual typesetting practice is td &8P points greater than the point sizeff

default is 10-point type on a 12-point spacing (as in this document). The clMiisrdvailable in thev register.
Multiple-V line separation (e.g., double spacing) may be requestedawitbut it is better to use a larges instead;

-14 -

certain preprocessors assume single spacing. The current line spacing is available medfister.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it to have
extra vertical space before and/or after it, thera-line-spacdunction\x’ N’ can be embedded in or attached to

that word. IfN is negative, the output line containing the word will be precededllextra vertical space; i is

positive, the output line containing the word will be followed Nyextra vertical space. If successive requests for
extra space apply to the same line, the maximum values are used. The most recently utilized post-line extra line-
space is available in tha register.

In\x’ .. and other functions having a pair of delimiters around their parameter, the delimiter choice (here
') is arbitrary, except that it can not look like the continuation of a number expresdion for

5.3. Blocks of vertical space.A block of vertical space is ordinarily requested ussp, which honors theno-
spacemode and which does not space past a trap. A contiguous block of vertical space may be resesxed using

vs N 12pts; 1/6in previous B,
Set vertical baseline spacing sixe Transient extra vertical space is available with’'N ’ (see
above).

Is N N=1 previous E

Line spacing setto WM. N -1 Vs (blank lines) are appended to each output text line. Appended blank
lines are omitted, if the text or previous appended blank line reached a trap position.

Ssp N - N=1V B,v
Space vertically in either direction. N is negative, the motion is backward (upward) and is limited

to the distance to the top of the page. Forward (downward) motion is truncated to the distance to the
nearest trap. If the no-space mode is on, no spacing occurs(saadrs below).

Ssv N - N=1V v
Save a contiguous vertical block of sike If the distance to the next trap is greater tiyrN vertical
space is output. No-space mode has no effect. If this distance is lesthamvertical space is

immediately output, bull is remembered for later output (3e€). Subsequergv requests will over-
write any still remembered.

.0S - - -
Output saved vertical space. No-space mode has no effect. Used to finally output a block of vertical
space requested by an eartierrequest.

.ns space - D
No-space mode turned on. When on, no-space mode inipitequests antdp requestswithout a
next page number. No-space mode is turned off when a line of output occurs, rsr with

.rs space - D
Restore spacing. The no-space mode is turned off.

Blank text line. - B

Causes a break and output of a blank line exactlyspke .

6. Line Length and Indenting

The maximum line length for fill mode may be set with. The indent may be set with ; an indent appli-
cable to only the next output line may be set with. The line length includes indent space but not page offset
space. The line length minus the indent is the basis for centering®itihe effect ofll ,in , orti is delayed, if
a partially collected line exists, until after that line is output. In fill mode the length of text on an output line is less
than or equal to the line length minus the indent. The current line length and indent are available in régiates
. respectively. The length dfiree-part tittesproduced byl (see §14) is independently setlby.

Al =N 6.5in previous En
Line length is set to.
in =N N=0 previous B,Bn

-15 -

Indent is set to K. The indent is prepended to each output line.
i =N - ignored B,Em

Temporary indent. The next output text line will be indented a distam¢aith respect to the current
indent. The resulting total indent may not be negative. The current indent is not changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macrois a named set of arbitrafynesthat may be invoked by name or withirap. A

string is a named string ofharacters not including a newline character, that may be interpolated by name at any
point. Request, macro, and string names share the same name list. Macro and string names may be one or two char-
acters long and may usurp previously defined request, macro, or string names; this implies that built-in operations
may be (irrevocably) redefined. Any of these entities may be renamechwithremoved withrm.

Macros are created bge anddi , and appended to bgmandda; di andda cause normal output to be
stored in a macro. A macro is invoked in the same way as a request; a control line begininlgjinterpolate the
contents of macregx. The remainder of the line may contain up to @rguments

Strings are created bys and appended to bgs. The stringsx andxx are interpolated at any desired point
with \ kxand\ *(xxrespectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation.During the definition and extension of strings and macros (not by diversion)
the input is read inopy mode In copy mode, input is copied without interpretation except that:

- The contents of number registers indicatedrbyare interpolated.

- Strings indicated by *x are interpolated.

« Arguments indicated bys are interpolated.

- Concealed newlines indicated bgewlineare eliminated.

- Comments indicated By are eliminated.

-\t and\a are interpreted asSCll horizontal tab angOHrespectively (89).
«\\ isinterpreted a%.

«\. isinterpreted as."”.

These interpretations can be suppressed by prependind-ar example, sinc@ maps into & , \\n will copy as
\n , which will be interpreted as a number register indicator when the macro or string is reread.

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to nine argu-
ments. The argument separator is the space character (not tab), and arguments may be surrounded by double quotes
to permit embedded space characters. Pairs of double quotes may be embedded in double-quoted arguments to rep-
resent a single double-quote character. The arguffiens explicitly null. If the desired arguments won't fit on a

line, a concealed newline may be used to continue on the next line. A trailing double quote may be omitted.

When a macro is invoked thaput levelis pushed dowrand any arguments available at the previous level
become unavailable until the macro is completely read and the previous level is restored. A macro’s own arguments
can be interpolated at any point within the macro wih\, which interpolates th<h argument (EN=9). If an
invoked argument does not exist, a null string results. For example, thexmatay be defined by

.de xx \" begin definition
Today is \$1 the \\$2.
" \" end definition

and called by
XX Monday 14th
to produce the text
Today is Monday the 14th.

Note that each$ was concealed in the definition with a prependledThe number of arguments is in ttg regis-
ter.

No arguments are available at the top (non-macro) level, within a string, or within a trap-invoked macro.

-16 -

Arguments are copied in copy mode onto a stack where they are available for reference. It is advisable to con-
ceal string references (with an extrato delay interpolation until argument reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing (see
Tutorial 8T5) or determining the horizontal and vertical size of some text for conditional changing of pages or
columns. A single diversion trap may be set at a specified vertical position. The number redistans dl
respectively contain the vertical and horizontal size of the most recently ended diversion. Processed text that is
diverted into a macro retains the vertical size of each of its lines when rereadilinmode regardless of the current

V. Constant-spaceatg) or emboldenedhd) text that is diverted can be reread correctly only if these modes are
again or still in effect at reread time. One way to do this is to embed in the diversion the appropriatebd

requests with theransparentmechanism described in 810.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion level
(the top non-diversion level may be thought of as the Oth diversion level). These are the diversion trap and associ-
ated macro, no-space mode, the internally-saved marked placenksert), the current vertical placed regis-
ter), the current high-water text baselitte fegister), and the current diversion narze (egister).

7.5. Traps. Three types of trap mechanisms are availalgpage traps, a diversion trap, and an input-line-count

trap. Macro-invocation traps may be planted usiviyat any page position including the top. This trap position

may be changed usimdp. Trap positions at or below the bottom of the page have no effect unless or until moved to
within the page or rendered effective by an increase in page length. Two traps may be planted at the same position
only by first planting them at different positions and then moving one of the traps; the first planted trap will conceal
the second unless and until the first one is moved (see Tutorial Examples). If the first one is moved back, it again
conceals the second trap. The macro associated with a page trap is automatically invoked when a line of text is out-
put whose vertical size reaches or sweeps past the trap position. Reaching the bottom of a page springs the top-of-
page trap, if any, provided there is a next page. The distance to the next trap position is available indhister;

if there are no traps between the current position and the bottom of the page, the distance returned is the distance to
the page bottom.

A macro-invocation trap effective in the current diversion may be planted aisingrhe.t register works in
a diversion; if there is no subsequent trap a large distance is returned. For a description of input-line-count traps, see
it below.

.de xxyy - Yy=.. -
Define or redefine the macroc. The contents of the macro begin on the next input line. Input lines
are copied ircopy modeuntil the definition is terminated by a line beginning wity, whereupon the
macroyy is called. In the absence gy, the definition is terminated by a line beginning with. “”.
A macro may contaimle requests provided the terminating macros differ or the contained definition

terminator is concealed. .! ” can be concealed a@8.. which will copy as\.. and be reread as
.am xxyy - Yy=.. -
Append to macrax (append version afe).
.ds xxstring - ignored -
Define a stringkx containingstring. Any initial double quote irstring is stripped off to permit initial
blanks.
.as xxstring - ignored -

Appendstring to stringxx (append version als).
.rm xx - ignored -

Remove request, macro, or string. The nam& removed from the name list and any related storage
space is freed. Subsequent references will have no effect. If many macros and strings are being cre-
ated dynamically, it may become necessary to remove unused ones to recapture internal storage space
for newer registers.

noxxyy - ignored -
Rename request, macro, or striago yy. If yyexists, it is first removed.

-17 -

di xx - end D

Divert output to macroxx. Normal text processing occurs during diversion except that page offsetting
is not done. The diversion ends when the requiéstor da is encountered without an argument;
extraneous requests of this type should not appear when nested diversions are being used.

.da xx - end D
Divert, appending to macpo (append version afi).
wh N xx - - \Y

Install a trap to invokexx at page positiomN; a negative N will be interpreted as a distance from the
page bottom. Any macro previously plantedhats replaced byx. A zeroN refers to the top of a
page. Inthe absencexof the first trap found &\, if any, is removed.

.ch xx N - - \Y
Change the trap position for macooto beN. In the absence M, the trap, if any, is removed.
At N xx - off D,v
Install a diversion trap at positioN in the current diversion to invoke macrax. Anotherdt will
redefine the diversion trap. If no arguments are given, the diversion trap is removed.
N xx - off E
Set an input-line-count trap to invoke the magraafter N lines oftextinput have been read (control

or request lines do not count). The text may be inline text or text interpolated by inline or trap-
invoked macros.

.em XX none none -

The macraxx will be invoked when all input has ended. The effect is almost as if the contemts of
had been at the end of the last file processed, but all processing ceases at the next page eject.

8. Number Registers

A variety of parameters are available to the user as predefinetber register¢see Summary, page 194). In
addition, users may define their own registers. Register names are one or two characters long and do not conflict
with request, macro, or string names. Except for certain predefined read-only registers, a number register can be
read, written, automatically incremented or decremented, and interpolated into the input in a variety of formats. One
common use of user-defined registers is to automatically number sections, paragraphs, lines, etc. A number register
may be used any time numerical input is expected or desired and may be used in nexpeessibn$g1.4).

Number registers are created and modified using which specifies the name, numerical value, and the
auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence. If thexregisters
andxxboth contairN and have the auto-increment siethe following access sequences have the effect shown:

O ad Effect on O Value @O
DSequenc@ Register U Interpolated
L\n X D none E N g
[}\n(XX 0 none 0 N O
On+ x Cxincremented byl [0 N+M O
D\n -X Dxdecremented by U N-m U

n+(XX xxmcremented byvi 0 N+M E
qn -(xx Dxxdecremented bV 7 N-M 0

When interpolated, a number register is converted to decimal (default), decimal with leading zeros, lower-case
Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alphabetic according to the
format specified byaf .

.nr RENM - u

The number registeR is assigned the valueN-with respect to the previous value, if any. The incre-
ment for auto-incrementing is setNb

.af Rc arabic - -

-18 -

Assign format to registeR. The available formats are:

O O Numbering O
Urormat U Sequence u
H H {]
01 [0.12345,.. 5
0 00 000, 001, 002, 003, 004, 005, ... 0
O i 0, i, ii, iii, iv, v, ... O
O Do,nLnngiv,y, ... O
E a ,a,b,c, ...,z a3, ab, ..., zz, aaa, ... E
0 A [0,ABC, .., ZAAAB,..ZZ AAA ..o

An arabic format havind\ digits specifies a field width ofl digits (example 2 above). The read-only
registers and the width functid (811.2) are always arabic. Warning: the value of a number regis-
ter in a non-arabic format is not numeric, and will not produce the expected results in expressions.

The function\g x or\g(xxreturns the format of a number register in a form suitablaffoiit returns
nothing if the register has not been used.

ar R - ignored -

Remove number regist® If many registers are being created dynamically, it may become necessary
to remove unused registers to recapture internal storage space for newer registers. TheRegister
contains the number of number registers still available.

9. Tabs, Leaders, and Fields

9.1. Tabs and leaders.The ASCII horizontal tab character and tsCll SOH (control-A, hereafter called the
leadercharacter) can both be used to generate either horizontal motion or a string of repeated characters. The length
of the generated entity is governed by intertadd stopsspecifiable withta . The default difference is that tabs gen-

erate motion and leaders generate a string of periedsandlc offer the choice of repeated character or motion.
There are three types of internal tab stepeft adjusting right adjusting, andentering In the following tableD is

the distance from the current position on thput line (where a tab or leader was found) to the next tab siept-

string consists of the input characters following the tab (or leader) up to the next tab (or leader) or end of liffe, and

is the width ofnext-string

0 Tab OLength of motion of! Location of O
U type Urepeated charactefs next-string O
& t & - (]
0 Left D H:ollowmg D 0
O Right o D-wW [Right adjusted withiD
HCenteredH D-WR HCentered on right end Bf H

The length of generated motion is allowed to be negative, but that of a repeated character string cannot be. Repeated
character strings contain an integer number of characters, and any residual distance is prepended as motion. Tabs or
leaders found after the last tab stop are ignored, but may be used-afingterminators.

Tabs and leaders are not interpreted in copy mdtde.and\a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair féld delimitercharacters, and consists of sub-strings separated

by paddingindicator characters. The field length is the distance orirtpat line from the position where the field

begins to the next tab stop. The difference between the total length of all the sub-strings and the field length is
incorporated as horizontal padding space that is divided among the indicated padding places. The incorporated pad-
ding is allowed to be negative. For example, if the field delimitef and the padding indicator s, #* xxx*right #

specifies a right-adjusted string with the strixgcentered in the remaining space.

da Nt... 0.8; 0.5in none m

Set tab stops and type$=R, right adjusting;t=C, centering;t absent, left adjustingTroff tab stops
are preset every 0.5imyroff every 0.8in. The stop values are separated by spaces, and a value pre-
ceded byt is treated as an increment to the previous stop value.

fc ¢ none none E

-19 -

The tab repetition character becorogsr is removed, thus specifying motion.

lc c . none E
The leader repetition character becomes is removed, thus specifying motion.
fc ab off off -

The field delimiter is set t@; the padding indicator is set to the space character br tbgiven. In
the absence of arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1. Input character translations. Ways of inputting the valid character set were discussed in §2.1. Ao
control characters horizontal tab (89.8PH (89.1), and backspace (810.3) are discussed elsewhere. The newline
delimits input lines. In additionSTX, ETX, ENQ, ACK, andBEL are accepted, and may be used as delimiters or
translated into a graphic with (810.5). All others are ignored.

The escapecharactenl introducesescape sequenceshich cause the following character to mean another
character, or to indicate some function. A complete list of such sequences is given in the Summary on page 193.
The escape charactershould not be confused with tiSCIl control characteESC. The escape charactercan be
input with the sequenc& . The escape character can be changed eathand all that has been said about the
default\ becomes true for the new escape charadiercan be used to print whatever the current escape character
is. The escape mechanism may be turned off @thand restored withc.

.ec ¢ \ \ -

Set escape charactentpor toc, if given.
.e0 on - -

Turn escape mechanism off.
10.2. Ligatures. The set of available ligatures is device and font dependent, but is often a suls2tp® and?
They may be input by(fi , \(fl ,\(ff ,\(Fi , and\(Fl respectively. The ligature mode is normally on in
troff, and automatically invokes ligatures during input.
dg N on; off on -

Ligature mode is turned on N is absent or non-zero, and turned ofNf=0. If N=2, only the two-
character ligatures are automatically invoked. Ligature mode is inhibited for request, macro, string,
register, or file names, and in copy mode. No effearaff.

10.3. Backspacing, underlining, overstriking, etdJnless in copy mode, th&SClIl backspace character is replaced
by a backward horizontal motion having the width of the space character. Underlining as a form of line-drawing is
discussed in 812.4. A generalized overstriking function is described in §12.1.

Nroff automatically underlines characters in tiniederline font, specifiable withuf , normally that on font
position 2. In addition tdt and\f F, the underline font may be selected bly andcu. Underlining is restricted
to an output-device-dependent subset of reasonable characters.

ul N off N=1 E

Italicize in troff (underline innroff) the nextN input text lines. Actually, switch to underline font,
saving the current font for later restoration; other font changes within the spaul ofvdl take effect,

but the restoration will undo the last change. Output generatetl b{g14) is affected by the font
change, but does not decreméht If N > 1, there is the risk that a trap interpolated macro may pro-
vide text lines within the span; environment switching can prevent this.

.cu N off N=1 E
Continuous underline. A variant of that causesverycharacter to be underlined imoff. Identical
toul in troff.

.uf F Italic Italic -

Underline font set t&. In nroff, F may not be on position 1.

10.4. Control characters. Both the control character and theno-breakcontrol charactef may be changed.
Such a change must be compatible with the design of any macros used in the span of the change, and particularly of

-20 -

any trap-invoked macros.
.cC C . . E

The basic control character is settor reset to * .
.c2 ¢ ’ ’ E
Theno-breakcontrol character is set tpor reset to * .

10.5. Output translation. One character can be made a stand-in for another charactertusingll text process-
ing (e.g., character comparisons) takes place with the input (stand-in) character which appears to have the width of
the final character. The graphic translation occurs at the moment of output (including diversion).

Ar abcd.... none - @]

Translatea into b, c into d, etc. If an odd number of characters is given, the last one will be mapped
into the space character. To be consistent, a particular translation must stay in effeatgutro
outputtime.

10.6. Transparent throughput. An input line beginning with &' is read in copy mode anmansparentlyoutput
(without the initial\!); the text processor is otherwise unaware of the line’s presence. This mechanism may be used
to pass control information to a post-processor or to embed control lines in a macro created by a diversion.

10.7. Transparent output The sequenceX’ anything copiesanythingto the output, as a device control function
of the formx X anything(822). Escape sequencesaimnythingare processed.

10.8. Comments and concealed newlinedn uncomfortably long input line that must stay one line (e.g., a string
definition, or nofilled text) can be split into several physical lines by ending all but the last one with the &scape
The sequencenewlineis always ignored, except in a comment. Comments may be embedded at the end of any line
by prefacing them with" . The newline at the end of a comment cannot be concealed. A line beginniny'with

will appear as a blank line and behave lisp 1 ; a comment can be on a line by itself by beginning the line with

A

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions\v’ N' and\h’ N can be used folocal vertical and horizontal motion
respectively. The distand¢ may be negative; the positive directions are rightward and downward. A local motion

is one contained within a line. To avoid unexpected vertical dislocations, it is necessary that the net vertical local
motion within a word in filled text and otherwise within a line balance to zero. The above and certain other escape
sequences providing local motion are summarized in the following table.

O Vertical 0O Effect in 0 Horizontal O Effect in O
O ocal Motion ' troff nroff i ocal Motion troff nroff U
& t fH t {1
O W N’ [Move distanceN [O 0
E \n" N’ H\/Iove distancéN % 0 0
\ space Ebnpaddable space-size sp%e

0 0 a., .. m A

o\ zemup Y%lineup \0 Digit-size space 0
O \d 2 em downp % line dowiis & 5 0
O v Memup O1l1llineup @ [1/6 em space 5 ignored O
O D 0 M\ 51/12 em spac 1 ignored U
§ § 0 m s i

As an exampleE? could be generated by the sequeBte -2\v' -0.4m’2\v'0.4m’\s+2 ; hote that the 0.4 em

vertical motions are at the smaller size.

11.2. Width Function. The width function\w’ string generates the numerical width sfring (in basic units).

Size and font changes may be embeddedtiing, and will not affect the current environment. For example,

i -WwWA\B1. 'u could be used to temporarily indent leftward a distance equal to the size of the string
“1. "infont B.

The width function also sets three number registers. The regiteafnidsb are set respectively to the high-
est and lowest extent aftring relative to the baseline; then, for example, the total height of the string is
\n(stu -\n(sbu . In troff the number registert is setto a value between 0 and 3. The value 0 means that all of

-21 -

the characters istring were short lower case characters without descendersg)ike means that at least one char-
acter has a descender (likg 2 means that at least one character is tall Qjkand 3 means that both tall characters
and characters with descenders are present.

11.3. Mark horizontal place. The function\k x causes the current horizontal position in thput lineto be stored
in registerx. For example, the constructidkx word\h’|\nxu+3u’ word will emboldenword by backing up to
almost its beginning and overprinting it, resultingviard.

12. Overstrike, Bracket, Line-drawing, Graphics, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided tyvtrstrikefunc-
tion\o’ string’ . The characters igtring are overprinted with centers aligned; the total width is that of the widest
character.string may not contain local vertical motion. As examplese\” produces &, an’\(mo\(sl'
produced/.

12.2. Zero-width characters.The function\z ¢ will output ¢ without spacing over it, and can be used to produce
left-aligned overstruck combinations. As example¥ci\(pl will produce ®, and\(br\z\(rn\(ul\(br
will produce a small constructed box

12.3. Large Brackets. The Special Font usually contains a number of bracket construction pieces
0000000 OO O that can be combined into various bracket styles. The funébibrstring” may be used to

pile up vertically the characters siring (the first character on top and the last at the bottom); the characters are ver-
tically separated by 1 em and the total pile is centered 1/2 em above the current baseline (W diffe iRor exam-

ple,

\R\(I\(IFE\b’\(re\(rf'\x’ -0.5m"\x’0.5m’

produces%g

12.4. Line drawing. The function\I' Nc (backslash-ell) draws a string of repeatdsl towards the right for a
distanceN. If ¢ looks like a continuation of an expression féyit may be insulated frolN with a\& . If ¢ is not
specified, the _ (baseline rule) is used (underline charactanoiff). If N is negative, a backward horizontal motion
of sizeN is made before drawing the string. Any space resulting fidi{size ofc) having a remainder is put at the
beginning (left end) of the string. N is less than the width o, a singlec is centered on a distan®¢ In the case
of characters that are designed to be connected, such as baseline-rule _, undeamdleoot-en , the remainder
space is covered by overlapping. As an example, a macro to underscore a string can be written

.de us
WS\ [oV(ul

or one to draw a box around a string

.de bx
\(br\[WSL\\(br\ I"]O\(rn*\ 1’| O\(ul’

such that
.ul "underlined words"
and

.bx "words in a box"

——————————

The function\L’ Nc draws a vertical line consisting of the (optional) charactetacked vertically apart
1lem (1 line innroff), with the first two characters overlapped, if necessary, to form a continuous line. The default
character is théox rule [(\(br); the other suitable character is theld vertical O (\(bv). The line is begun
without any initial motion relative to the current baseline. A positspecifies a line drawn downward and a nega-
tive N specifies a line drawn upward. After the line is drawn no compensating motions are made; the instantaneous
baseline is at the end of the line.

-22 -

d The horizontal and vertical line drawing functions may be used in combination to produce large boxé$. The
[Zero-widthbox-rule and the %-em widender-rulewere designed to form corners when using 1-em vertical spac-
gs. For example the macro

.de eb

.sp -1 \"compensate for next automatic baseline spacing

.nf \"avoid possibly overflowing word buffer

\h’-.5n"\L’|\nau -2\'\n(Ju+2n\(ul\L’-|\\nau+2'\I'|Ou-.5n\(ul’ \"draw box
fi

N
Ooooooood

lwill draw a box around some text whose beginning vertical place was saved in number ragietgt, using
k a) as was done for this paragraph. M

12.5. Graphics. The function\D’ c..” draws a graphic object of typeaccording to a sequence of parameters,
which are generally pairs of numbers.

\D'l dh dv draw line from current position kyh, dv
\Dc d draw circle of diametedt with left side at current position
\D’e d;d,’ draw ellipse of diameters;, andd,

\D’a dh; dv; dh, dv,” draw arc from current position tth; +dh,, dv; +dv,,
with center ath,, dv; from current position

\D'~ dh;dv,dhsdv,... draw B-spline from current position lof; dvy,
then bydh,,dv,, then bydh,,dv,, then ...
For example\D’e0.2i 0.11’ draws the ellipsg—, and\D’l.2i -.1"\D’l.1i .1 the line.—"\..

A \D with an unknowrt is processed and copied through to the output for unspecified interpretation.

Numbers taken as horizontal (first, third, etc.) have default scaling of ems; vertical numbers (second, fourth,
etc.) have default scaling & s (81.3). The position after a graphical object has been drawn is at its end; for circles
and ellipses, the “end” is at the right side.

13. Hyphenation.

Automatic hyphenation may be switched off and on. When switched onhyittseveral variants may be set.
A hyphenation indicatocharacter may be embedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenation. In addition, the user may specify a small list of exception words.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic strings are
candidates for automatic hyphenation. Words that contain hyphens (minus), em-désime} ©r hyphenation
indicator characters are always subject to splitting after those characters, whether automatic hyphenation is on or off.

.nh hyphenate - E
Automatic hyphenation is turned off.
.hy N on,N=1 on,N=1 E
Automatic hyphenation is turned on td= 1, or off for N=0. If N =2, last lines (ones that will cause

atrap) are not hyphenated. Ad=4 and 8, the last and first two characters respectively of a word are
not split off. These values are additive; il 14 will invoke all three restrictions.

.hc ¢ \% \% E
Hyphenation indicator character is setdor to the default%. The indicator does not appear in the
output.

.hw word ... ignored -

Specify hyphenation points in words with embedded minus signs. Versions of a word with tesminal
are implied; i.e.dig-it implies dig-its . This list is examined initially and after each suffix
stripping. The space available is smadlbout 128 characters.

-23 -

14. Three-Part Titles.

The titling functiontl provides for automatic placement of three fields at the left, center, and right of a line
with a title length specifiable witht . t| may be used anywhere, and is independent of the normal text collecting
process. A common use is in header and footer macros.

Al left center right’ - -

The stringdeft, center andright are respectively left-adjusted, centered, and right-adjusted in the cur-
rent title length. Any of the strings may be empty, and overlapping is permitted. If the page-number
character (initially?g is found within any of the fields it is replaced by the current page number in the
format assigned to regist& Any character may be used in placé @fs the string delimiter.

.pc ¢ % off -
The page number character is set,tor removed. The page number register renfdins
t =N 6.5in previous En

Length of title is set to N. The line length and the title length are independent. Indents do not apply
to titles; page offsets do.

15. Output Line Numbering.

Automatic sequence numbering of output lines may be requestechmitiWhen in effect, a three-digit,
arabic number plus a digit-space is prepended to output text lines. The text lines are thus offset by four digit-
3 spaces, and otherwise retain their line length; a reduction in line length may be desired to keep the right margin
aligned with an earlier margin. Blank lines, other vertical spaces, and lines generatedaby not numbered.
Numbering can be temporarily suspended with or with an.nm followed by a laternm +0. In addition, a
6 line number indent, and the number-text separati®may be specified in digit-spaces. Further, it can be spec-
ified that only those line numbers that are multiples of some nuribare to be printed (the others will appear
as blank number fields).

.nmzNMS| off E

Line number mode. If N is given, line numbering is turned on, and the next output line numbered is
numbered N. Default values arM =1, S=1, andl =0. Parameters corresponding to missing argu-
ments are unaffected; a non-numeric argument is considered missing. In the absence of all arguments,
numbering is turned off; the next line number is preserved for possible further use in number register
In .
.nn N - N=1 E
The nextN text output lines are not numbered.
9 As an example, the paragraph portions of this section are numberewigh.nm 13 was placed at
the beginning;nm was placed at the end of the first paragraph; amd +0 was placed in front of this para-
graph; andnm finally placed at the end. Line lengths were also changedy000'u) to keep the right
12 side aligned. Another example.iam +5 5 x 3 , which turns on numbering with the line number of the next
line to be 5 greater than the last numbered line, Witk 5, with spacingS untouched, and with the indehset
to 3.

16. Conditional Acceptance of Input

In the following, c is a one-character built-inondition name,! signifiesnot, N is a numerical expression,
stringl and string2 are strings delimited by any non-blank, non-numeric character not in the stringangitidng
represents what is conditionally accepted.

if ¢ anything - -

If conditionc true, accepanythingas input; in multi-line case u$g@nything \}.
if! canything -

If conditionc false, accepnything
if N anything - u

-24 -

If expressiorN > 0, accepanything
if ! N anything - u
If expressiorN = 0, accepanything
if’ stringl stringZ anything -
If stringlidentical tostring2, accepgnything
df string?’ stringZ anything -
If string1not identical tostring2, accepanything
.ie canything - u
If portion of if-else; all of the forms faf above are valid.
.el anything - -
Else portion of if-else.
The built-in condition names are:

[ICondition [O
U Name U True If g
] [.

o o rCurrent page number is od%
o e Current page number is even
O t [Formatter igroff O
H n Hrormatter iswroff H

If the conditionc is true, or if the numbeN is greater than zero, or if the strings compare identically (including
motions and character size and foraiythingis accepted as input. Ifla precedes the condition, number, or string
comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginnirangthingare skipped over. Thanythingcan be either
a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, the first line must
begin with a left delimitef{ and the last line must end with a right delimijer.

The requeste (if-else) is identical tdf except that the acceptance state is remembered. A subsequent and
matchingel (else) request then uses the reverse sense of thatistagé. pairs may be nested.

Some examples are:
.if e .tl’ Even Page %"
which outputs a title if the page number is even; and

e \n%>1\{\
' sp 0.5i

tl 'Page %
’ sp [1.2i \}
.el .sp |2.5i

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered togetherenteranmentwhich
can be switched by the user. The environment parameters are those associated with requests noting\®iagheir
column; in addition, partially collected lines and words are in the environment. Everything else is global; examples
are page-oriented parameters, diversion-oriented parameters, number registers, and macro and string definitions. All
environments are initialized with default parameter values.

.ev N N=0 previous -

Environment switched to environment® <2. Switching is done in push-down fashion so that
restoring a previous environmentustbe done with.ev rather than specific reference. Note that
what is pushed down and restored is the environmanber not its contents.

-25 -

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard inputiwitibhich will switch back when two
consecutive newlines are found (the extra blank line is not used). This mechanism is intended for insertions in
form-letter-like documentation. QuUNIX, the standard input can be the user’s keyboard, a pipe, or a file.

.rd prompt - prompt=BEL -

Read insertion from the standard input until two newlines in a row are found. If the standard input is
the user’s keyboargarompt(or aBEL) is written onto the standard outputd behaves like a macro,
and arguments may be placed aftieympt

.ex - - -
Exit from nroff/troff. Text processing is terminated exactly as if all input had ended.

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal, the com-
mand line option-q will turn off the echoing of keyboard input and prompt only wiBEL. The regular input and
insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the copies in
one file to be used as the standard input, and causing the file containing the letter to reinvoke itseX (gi®9);
the process would ultimately be ended byarin the insertion file.

19. Input/Output File Switching
.so filename - -

Switch source file. The top input (file reading) level is switchefilename When the new file ends,
input is again taken from the original filso’s may be nested.

.nx filename end-of-file -
Next file is filename The current file is considered ended, and the input is immediately switched to
filename

.Sy string - -
Execute program fromatring, which is the rest of the input line. The output is not collected automati-
cally. The number registe$$, which contains the process id of th®ff process, may be useful in
generating unique filenames for output.

.pi string - -
Pipe output testring, which is the rest of the input line. This request must occur before any printing
occurs.

.cf filename - -

Copy contents of filefilenameto output, completely unprocessed. The file is assumed to contain
something meaningful to subsequent processes.

20. Miscellaneous
.mc cN - off E,m O

Specifies that anargin charactec appear a distandd to the right of the right margin after each nong]
empty text line (except those producedtby). If the output line is too long (as can happen in nofilf]
mode) the character will be appended to the linel I§ not given, the previoull is used; the initial]
N is 0.2 inches imroff and 1 em introff. The margin character used with this paragraph was a [2-

point box-rule. O
.tm string - newline -
After skipping initial blanksstring (rest of the line) is read in copy mode and written on the standard
error.
.ab string - newline -

After skipping initial blanksstring (rest of the line) is read in copy mode and written on the standard
error. Troff or nroff then exit.

-26 -

g yy - Yy=.. -
Ignore input lines.ig behaves exactly likele (87) except that the input is discarded. The input is
read in copy mode, and any auto-incremented registers will be affected.

Af N filename - -

Set line number tdN and filename tdfilenamefor purposes of subsequent error messages, etc. The
number register [sicJF contains the name of the current input file, as set by command line argument,
so, nx, orlf . The number registec contains the number of input lines read from the current file,
again perhaps as modified Iy .

pm t - all -

Print macros. The names and sizes of all of the defined macros and strings are printed on the standard
error; iftis given, only the total of the sizes is printed. The sizes is given in blocks of 128 characters.

Al - - B
Flush output buffer. Force output, including any pending position information.

21. Output and Error Messages.

The output fromtm, pm and the prompt fronnd , as well as various error messages are written onto the stan-
dard error. The latter is different from the standard output, where formatted text goes. By default, both are written
onto the user’s terminal, but they can be independently redirected.

Various error conditions may occur during the operatiommafff andtroff. Certain less serious errors having
only local impact do not cause processing to terminate. Two examplegoadeoverflow caused by a word that is
too large to fit into the word buffer (in fill mode), arlthe overflow caused by an output line that grew too large to
fitin the line buffer. In both cases, a message is printed, the offending excess is discarded, and the affected word or
line is marked at the point of truncation with#ain nroff and a=» in troff. Processing continues if possible, on the
grounds that output useful for debugging may be produced. If a serious error occurs, processing terminates, and a
message is printed, along with a list of the macro names currently active. Examples of serious errors include the
inability to create, read, or write files, and the exceeding of certain internal limits that make future output unlikely to
be useful.

22. Output Language

Troff produces its output in a language that is independent of any specific output device, except that the num-
bers in it have been computed on the basis of the resolution of the device, and the sizes, fonts, and characters that
that device can print. Nevertheless it is quite possible to interpret that output on a different device, within the latter’s
capabilities.

sn set point size to

fn set font ton

cc print ASCII charactec

Cxx print charactekx, terminatexx by white space

Nn print characten on current font

Hn go to absolute horizontal positionn = 0)

Vn go to absolute vertical position(n =0, down is positive)

hn go n units horizontallyn <0 is to the left

vn gon units vertically;n <0 is up

nnc move rightnn, then printASCII charactec; nnmust be exactly 2 digits
pn new pagen begins—set vertical position to 0

nb a end of line (information onk-no action); b = space before lina, = after
w paddable word space (information origpo action)

Dc...\n graphics function; see below

X ..\n device control functions; see below

#..\n comment

All position values are in units. Sequences that end in digits must be followed by a non-digit. Blanks, tabs and new-
lines may occur as separators in the input, and are mandatory to separate constructions that would otherwise be

-27 -

confused. Graphics functions, device control functions, and comments extend to the end of the line they occur on.

The device control and graphics commands are intended as open-ended families, to be expanded as needed.
The graphics functions coincide directly with iBe sequences:

DI dh dv draw line from current position kyh, dv

Dcd draw circle of diametedt with left side here

Dedh; dv, draw ellipse of diameteh; anddv,

Da dh; dv; dh, dv, draw arc from current position tih; +dh,, dv; +dv,,
center atlhy, dv; from current position

D~ dh; dv4 dh, dv; ... draw B-spline from current positiondd,, dv,,
then todh,, dv,, then to ...

Dz dh; dv; dh, dv, ... for any other is uninterpreted

In all of thesedh, dvis an increment on the current horizontal and vertical position, with down and right positive.
All distances and dimensions are in units.

The device control functions begin withthen a command, then other parameters.

XxT s name of typesetter &
Xr nhv resolution i units/inch; h=minimum horizontal motiony = minimum vertical
Xi initialize
xf ns mount fonts on font positiom
Xp pause—can restart
XS stop—done forever
Xt generate trailer information, if any
XxH n set character height to
XS n set slant ton
X X any generated by theX function
X any to be ignored if not recognized
Subcommands likei"” may be spelled out like thit .
The commandg T,x r ..., andx i mustoccur first; fonts must be mounted before they can be xsexd,;
comes last. There are no other order requirements.
The following is the output fromtello, world " for a typical Postscript printer, as described in §23:
X T post
xres72011
X init
VO
pl
x font1 R
x font 21
x font 3 B
x font 4 BI
x font 5 CW
x font 6 H
x font 7 HB
x font 8 HX
x font 9 S1

x font 10 S

-28 -

s10

f1

HO

s10

f1

VO
H720
V120
ch
50e44128128050,w58w72050r33128dn120 0
X trailer
V7920
X stop

Troff output is normally not redundant; size and font changes and position information are not included unless
needed. Nevertheless, each page is self-contained, for the benefit of postprocessors that re-order pages or process
only a subset.

23. Device and Font Description Files

The parameters that describe a output demmmeare read from the directorysr/lib/font/dev name
each timetroff is invoked. The device name is provided by default, by the environment vaiidtt&SETTERor
by a command-line argumeAl name The default device name st , for Postscript. The pre-defined string
contains the name of the device. TRecommand-line option may be used to change the default directory.

23.1. Device description file.The file DESCin /ustr/lib/font/dev namecontains general parameters of the
device, one per line, as a sequence of names and valuef.recognizes these parameters, and ignores any others
that may be present for specific drivers:

fonts nF; F, ... F,

sizes s; S, ...0

res n

hor n

vert n

unitwidth n

charset

list of multi-character character names (optional)

The F; are font names to be initially mounted. The list of sizes is a set of integers representing some or all of the
legal sizes the device can produce, terminated by a zeroréEhgarameter gives the resolution of the machine in
units per inchhor andver give the minimum number of units that can be moved horizontally and vertically.

Character widths for each font are assumed to be given in machine units at poimisiveth . (In other
words, a character with a width ofs n units wide at sizenitwidth .)

A list of valid character names may be introducedhmrset ; the list of names is optional.

A line whose first non-blank character#sis a comment. Except thaharset must occur last, parameters
may appear in any order.

Here is a subset of tigESCfile for a typical Postscript printer:

-29.-

Description file for Postscript printers.

fonts IORIBBICWHHBHXS1S

Sizes45678910111213141516 17 18 19 20 21 22 23
24 2526 27 2829 30 31 323334 3536 384044 485460720

res 720

hor 1

vert 1

unitwidth 10

charset

hy ct fi fl ff Fi Fl dg em 14 34 12 en aa

garuscdd->brSlpscscyasos-=.Id

rd le ge pp -+ ob vr

sq bx ci fa te ** pl mi eq ~= *A *B *X *D

*E*F *G *Y *| *K *L *M *N *O *P *R *H *S *T *U *W

*C *Q *Z ul rn *a *b *x *d *e *f *g *y *i *k

*I *m *n *O *p *h *r- *S *t *u *W *C *q *Z

23.2. Font description files. Each font is described by an analogous description file, which begins with parameters
of the font, one per line, followed by a list of characters and widths. The file for fbnts

lusr/lib/font/dev name f.

name str name of font istr

ligatures ... 0 list of ligatures

spacewidth n width of a space on this font
special this is a special font

charset

list of character name, width, ascender/descender, code
The name and charset fields are mandatorycharset must be last. Comments are permitted, as are other
unrecognized parameters.

Each line followingcharset describes one character: its name, its width in units as described above,
ascender/descender information, and a decimal, octal or hexadecimal value by which the output device knows it (the
\N “number” of the character). The character name is arbitrary, exceptthasignifies an unnamed character. If
the width field containg , the name is a synonym for the previous character. The ascender/descender field is 1 if the
character has a descender (hangs below the baseling), like if it has an ascender (is tall, lidg, is 3 if both, and
is 0 if neither. The value is returned in ttte register, as computed by ttve function (§11.2).

Here are excerpts from a typical font description file for the same Postscript printer.

hy 33 0 45 hyphen \(hy

- " - is a synonym for \(hy
Q 72 3 81

a 44 0 97

b 50 2 98

c 44 0 99

d 50 2 100

y 50 1 121

em 100 0 208

--- 44 2 220 English pound currency symbol \N'220’
36 0 221 centered dot \N'221’

This says, for example, that the width of the letéeis 44 units at point size 10, the value whitwidth . Point
sizes are scaled linearly and rounded, so the widdhnfl be 44 at size 10, 40 at size 9, 35 at size 8, and so on.

-30 -

Tutorial Examples

Introduction

It is almost always necessary to prepare at least
a small set of macro definitions to describe a docu-
ment. Such common formatting needs as page mar-
gins and footnotes are deliberately not built imff
and troff. Instead, the macro and string definition,
number register, diversion, environment switching,
page-position trap, and conditional input mechanisms
provide the basis for user-defined implementations.

For most uses, a standard package Hkes or
-mmis the right choice. The next stage is to augment
that, or to selectively replace macros from the stan-
dard package. The last stage, much harder, is to write
one’s own from scratch.

The examples discussed here are intended to be
useful and somewhat realistic, but will not necessarily
cover all relevant contingencies. Explicit numerical
parameters are used in the examples to make them
easier to read and to illustrate typical values. In many
cases, number registers would really be used to reduce
the number of places where numerical information is
kept, and to concentrate conditional parameter initial-
ization like that which depends on whethieoff or
nroff is being used.

Page Margins

As discussed in 83, header and footer macros
are usually defined to describe the top and bottom
page margin areas respectively. A trap is planted at
page position O for the header, and-&t (N from the
page bottom) for the footer. The simplest such defini-
tions might be

.de hd \"define header
'sp li

\"end definition
.de fo \"define footer
bp
. \"end definition
.wh 0 hd
.wh -1i fo

which provide blank 1 inch top and bottom margins.
The header will occur on thérst page, only if the
definition and trap exist prior to the initial pseudo-
page transition (83). In fill mode, the output line that
springs the footer trap was typically forced out
because some part or whole word didn't fit on it. If
anything in the footer and header that follows causes a
break, that word or part word will be forced out. In
this and other examples, requests like andsp that
normally cause breaks are invoked using the no-break
control character’ to avoid this. When the
header/footer design contains material requiring

independent text processing, the environment may be
switched, avoiding most interaction with the running
text.

A more realistic example would be

.de hd \"header
if\n%>1 \(\
'sp 0.5i-1 \"tl base at 0.5i
7% -" \"centered page number
.ps \"restore size

ft \"restore font

.vs \}\"restore vs
'sp 1.0i \"space to 1.0i
.ns \"turn on no-space mode

.de fo \"footer

.ps 10 \"set footer/header size
ftR \"set font

.vs 12p \"set baseline spacing
ifF %=1 \{\

'sp \\n(.pu-0.5i-1
A17-9% -7}
bp

\"tl base 0.5i up
\"first page number

.wh 0 hd

wh -1i fo
which sets the size, font, and baseline spacing for the
header/footer material, and ultimately restores them.
The material in this case is a page number at the bot-
tom of the first page and at the top of the remaining
pages. Thesp’s refer to absolute positions to avoid
dependence on the baseline spacing. Another reason
for doing this in the footer is that the footer is invoked
by printing a line whose vertical spacing swept past
the trap position by possibly as much as the baseline
spacing. No-space mode is turned on at the ertof
to render ineffective accidental occurrencesspf at
the top of the running text.

The above method of restoring size, font, etc.,
presupposes that such requests (that metvious
value) arenot used in the running text. A better
scheme is save and restore both the curaenprevi-
ous values as shown for size in the following:

.de fo
.nrsi\n(.s
.ps
.nrs2\n(.s \"previous size
\"rest of footer

\"current size

.de hd

--- \"header stuff
.ps\\n(s2 \"restore previous size
.ps\\n(s1l \"restore current size

Page numbers may be printed in the bottom margin by

-31-

a separate macro triggered during the footer's page Another common form is the labeled, indented
ejection: paragraph, where the label protrudes left into the

.de bn \"bottom number indent space.

M 7-9% - \"centered page number .delp \"labeled paragraph

.. .pg

.wh -0.5i-1v bn \"tl base 0.5i up .in 0.5i \"paragraph indent

ta0.2i 0.5 \"label, paragraph
h . tio

Paragraphs and Headings \tW$1\t\c \"flow into paragraph

The housekeeping associated with starting a
new paragraph should be collected in a paragraph
macro that, for example, does the desired prepara-
graph spacing, forces the correct font, size, baseline
spacing, and indent, checks that enough space remains
for more than oneline, and requests a temporary

The intended usage is.lp label”; label will begin

at 0.2 inch, and cannot exceed a length of 0.3 inch
without intruding into the paragraph. The label could

be right adjusted against 0.4 inch by setting the tabs

indent instead_with.ta 0.4iR _0.5i_ . The last line oilp_
' ends with\c so that it will become a part of the first
.de pg \"paragraph line of the text that follows.
.br \"break
ftR \"force font, Multiple Column Output

.ps 10 \"size,

vs12p \"spacing, The production of multiple column pages

ino \"and indent requires the footer macro to decide whether it was
sp0.4 \"prespace invoked by other than the last column, so that it will

.ne 1-+-\n(.Vu \"want more than 1 line begin a new column rather than produce the bottom
1 0.2i \"temp indent margin. The header can initialize a column register

that the footer will increment and test. The following
is arranged for two columns, but is easily modified for

The first break i ill force out any previous par-
i inpg wi ut any previous p more.

tial lines, and must occur before the. The forcing
of font, etc. is partly a defense against prior error and .de hd \"header

partly to permit things like section heading macros to .o

set parameters only once. The prespacing parameter .nhrcl01 \"init column count
is suitable fortroff; a larger space, at least as big as Mk \"'mark top of text

the output device vertical resolution, would be more 8

suitable innroff. The choice of remaining space to

test for in thene is the smallest amount greater than de fo \footer

. - . . . e \n+(cl<2 \\
one line (theV is the available vertical resolution). 00 +3.4i \"next column: 3.1+0.3
A macro to automatically number section head- .t \"back to mark
ings might look like: .ns\} \"no-space mode
P el\\
.desc \'section .po \nMu \"restore left margin

. -— \"force font, etc.
.sp 0.4 \"prespace ;bp M
.ne 2.4+\\n(.Vu \"want 2.4+ lines

fi N3.1i \"column width

\\n+S. .nr M\\n(.o \"save left margin
.nrsoil \"init S Typically a portion of the top of the first page con-

tains full width text; the request for the narrower line
length, as well as anothemk would be made where
the two column output was to begin.

The usage issc , followed by the section heading
text, followed by.pg . The ne test value includes
one line of heading, 0.4 line in the followingg, and
one line of the paragraph text. A word consisting of
the next section number and a period is produced to
begin the heading line. The format of the number
may be set baf (88).

-32 -

Footnotes

The footnote mechanism to be described is used
by embedding the footnotes in the input text at the
point of reference, demarcated by an initil and a
terminal.ef :

.fn
Footnote text and control lines...
ef

In the following, footnotes are processed in a separate
environment and diverted for later printing in the
space immediately prior to the bottom margin. There
is provision for the case where the last collected foot-
note doesn’t completely fit in the available space.

.de hd \"header

nrx01
.nry 0-\\nb
.ch fo -\\nbu
.if\n(dn .fz

\"init footnote count
\"current footer place
\"reset footer trap

\"leftover footnote

.de fo
.nrdn0
JF\\nx QA
.evl

.nf

.FN

.rm FN

\"footer
\"zero last diver. size

\"expand footnotes in evl

\"retain vertical size
\"footnotes

\"delete it

df"\\n(.z"fy" .di \"end overflow di
.nr x 0 \"disable fx
.ev \}\"pop environment

’bp

.de fx \"process footnote overflow
.if \nx .di fy \"divert overflow

.de fn \"start footnote

.daFN \"divert (append) footnote
evl \"in environment 1
Af\W\n+x=1 .fs \"if 1st, separator

i \"fill mode

.de ef \"end footnote

.br \"finish output

.nr z\n(.v \"save spacing

.ev \"pop ev

di \"end diversion

.nry -\\n(dn \"new footer position,

Aif\Wnx=1 .nry -(\n(.v-\\nz) \
\"uncertainty correction

.ch fo \\nyu \"y is negative

f (Wn(nl+1v)>(\n(.p+\\ny) \

.ch fo \n(nlu+1v \"didn't fit

.defs \"separator

\'ti’ \"1linch rule

.br

.de fz \"get leftover footnote

fn

.nf \"retain vertical size

fy \"where fx put it

.ef

.nrb 1.0i \"bottom margin size
.wh 0 hd \"header trap

.wh 12i fo \"footer trap->temp pos
.wh -\\nbu fx \"fx at footer position
.ch fo-\nbu \"conceal fx with fo

The headehnd initializes a footnote count regis-
ter x, and sets both the current footer trap position
registery and the footer trap itself to a nominal posi-
tion specified in registelp. In addition, if the register
dn indicates a leftover footnotdz is invoked to
reprocess it. The footnote start madro begins a
diversion (append) in environment 1, and increments
the countx; if the count is one, the footnote separator
fs is interpolated. The separator is kept in a separate
macro to permit user redefinition.

The footnote end macref restores the previ-
ous environment and ends the diversion after saving
the spacing size in register. y is then decremented
by the size of the footnote, available @m; then on
the first footnotey is further decremented by the dif-
ference in vertical baseline spacings of the two envi-
ronments, to prevent the late triggering the footer trap
from causing the last line of the combined footnotes to
overflow. The footer trap is then set to the lower (on
the page) ofy or the current page positioml() plus
one line, to allow for printing the reference line.

If indicated byx, the footerfo rereads the foot-
notes fromFN in nofill mode in environment 1, and
deletesFN. If the footnotes were too large to fit, the
macro fx will be trap-invoked to redivert the

-33-

overflow intofy , and the registedn will later indi-
cate to the header whettgr is empty.

Both fo and fx are planted in the nominal
footer trap position in an order that caudgs to be
concealed unless thi® trap is moved. The footer
then terminates the overflow diversion, if necessary,
and zerosx to disablefx , because the uncertainty
correction together with a not-too-late triggering of
the footer can result in the footnote rereading finish-
ing before reaching the trap.

A good exercise for the student is to combine
the multiple-column and footnote mechanisms.

The Last Page

After the last input file has endedyroff and
troff invoke theend macro(87), if any, and when it
finishes, eject the remainder of the page. During the
eject, any traps encountered are processed normally.
At the end of this last page, processing terminates
unless a partial line, word, or partial word remains. If
it is desired that another page be started, the end-
macro

.deen \"end-macro

\c

1bp

.emen
will deposit a null partial word, and produce another
last page.

-34 -

Special Character Names

The following table lists names for a set of characters, most of which have typically been availabieffith
Not all print on any particular device, including this one.

v Ho\(*m =~ \(=

\' v \(*n 0o \ap
— \(em 13 \(*c +* \(I=
- \- o \(*o - \(->
- \(hy mn \(*p - \(=-
- \- p \(*r 1 \(ua
o \(bu o \(*s | \(da
O \(sq G \(ts X \(mu
— \u T \(*t + \(di
Yo (14 v \(tu + \(+-
v \(12 o \(*f U \(cu
Yo \(34 X \(*x N \(ca
2 \(fi v \(*q C \(sb
2 \(fl 0w \(w D \(sp
9 \(ff A \(*A c \(b
2 \(Fi B \(*B 2 \(ip
2 \(F r \(*G oo \(if
° \(de A \(*D 0 \(pd
t \(dg E \(E vV o \(gr
' \(fm Z \(*2 = \(no
¢ \(ct H \(*Y J \(is
® \(rg © \(*H o< \(pt
© \(co I \(*1 @ \(es
+ \(pl K \(*K O \(mo
- \(mi A \(*L O \(br
= \(eq M \(*M ¥ \(dd
* o \(** N \(*N e \(rh
8 \(sc = \(*C = \(h
’ \(aa O \(*O = \(bs

\(ga n \(*p | \(or
_ \(ul P \(*R o \(ci
/ \(sl > \(*S O \(It
a \(*a T \(*T O \(Ib
B \(*b Y \(*U O \(rt
y \(*g o \(*F O \(rb
o \(*d X \(*X O \(Ik
€ \(*e Y *Q O \(rk
4 \(*z Q \(*w O \(bv
n o \(ty Vo \(sr O \(If
0 \(*h B \(rn O \(rf
l \(*i z \(>= O \(c
K \(*k = \(x= O \(rc
A \(*l = \(::

